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LIOUVILLE TYPE THEOREM FOR p-HARMONIC MAPS II

SEOUNG DAL JuNG

ABSTRACT. Let M be a complete Riemannian manifold and let N be a
Riemannian manifold of non-positive sectional curvature. Assume that

RicM > —%uo at all x € M and Vol(M) is infinite, where po > 0 is

the infimum of the spectrum of the Laplacian acting on L2-functions on
M. Then any p-harmonic map ¢ : M — N of finite p-energy is constant.
Also, we study Liouville type theorem for p-harmonic morphism.

1. Introduction

Let (M, g) and (N, h) be smooth Riemannian manifolds and let ¢ : M — N
be a smooth map. For a compact domain 2 C M, the p-energy E,(¢; Q) of ¢
over () is defined by

1
(1.1) By(0:0) = /Q 1| s,

where the differential d¢ is a section of the bundle T*M ® ¢~ TN — M and
¢~ 'TN denotes the pull-back bundle via the map ¢. The bundle T*M ®
¢~ YT N — M carries the connection V induced by the Levi-Civita connections
on M and N. A map ¢ : M — N is called p-harmonic if the p-tension field
Tp(¢) = 0, which is defined by

(1.2) (9) = trgV(|do['~*dg),

where try denote the trace with respect to the metric g. A p-harmonic map ¢ is
a critical point of the energy functional defined by (1.1) on any compact domain
Q C M. When p = 2, p-harmonic maps are well-known to be harmonic maps.
Several studies are given for harmonic maps (see [5], [6], [7], [8], [10], [11], [12],
[13], [14], [16]). Let uo be the infimum of the spectrum of the Laplacian Ay
acting on L?-functions on M and Ric™ be the Ricci tensor of M.

Recently, D. J. Moon, H. Liu and S. D. Jung [9] proved the following theorem
for p-harmonic maps.
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Theorem 1. 1 ([9]) Let M be a complete Riemannian manifold such that
RicM > — (p Y110 for all x and Ric™ > —2271 0 ot some point z. Let N
P

be a complete Rzemanman manifold of non-positive sectional curvature. Then
any p-harmonic map ¢ : M — N of E,(¢) < 0o is constant.

In Theorem 1.1, the condition Ric™ > *%Ho at some point xg is es-
sential. In this paper, we prove Theorem 1.1 when the volumn is infinite, i.e.,
Vol(M) = oo instead of RicM > *%Ho at some point. Then we have the
following theorem.

Theorem A Let M be a complete Riemannian manifold such that Ric™ >

(p u for all x and Vol(M) is infinite. Let N be a complete Riemannian
mamfold of mon-positive sectional curvature. Then any p-harmonic map ¢ :
M — N of E,(¢) < oo is constant.

A map ¢ : (M,g) — (N,h) is a p-harmonic morphism if it pulls back (local)
p-harmonic functions on N to (local) p-harmonic functions on M, i.e., for any
function f : V. C N — R if 7,(f) = 0, then 7,(f o ¢) = 0. It is well-known
[4, 8] that a non-constant map is a p-harmonic morphism if and only if it
is a horizontally weakly conformal p-harmonic map. A horizontally weakly
conformal map ¢ : (M,g) — (N, h) generalizes the notion of a Riemannian
submersion in that for any € M at which d¢, # 0, the restriction dé.|m,
H, — Ty)N is conformal and surjective, where the horizontal space H, is
the orthogonal complement of V, = Ker(d¢,) in T, M. Trivially, if we put
Cy = {x € M | dp, = 0}, then there exists a function X : M\Cy — R such
that

(1.3) hd$(X),dp(Y)) = \2g(X,Y) VXY € H.

Note that at the point x € Cy we can let A(z) = 0 and obtain a continuous
function A : M — RTU{0} which is called the dilation of a horizontally weakly
conformal map ¢. A non-constant horizontally weakly conformal map ¢ is said
to be horizontally homothetic if the gradient of \?(z) is vertical, meaning that
X (M%) = 0 for any horizontal vector field X on M. In 2008, D. J. Moon, H.
Liu and S. D. Jung [9] also proved the following.

Theorem 1.2 ([9]). Let M be a complete Riemannian manifold such that
RicM > —4e- D for all @ and Ric™ > —227Y 0 ot some point z. Let
p? p?

N be a complete Riemannian manifold of non-positive scalar curvature. Then
any p-harmonic morphism ¢ : M — N of E,(¢) < oo is constant.

In this paper, we prove Theorem 1.2 under the condition Vol(M) = oo
instead of RicM > —% Lo at some point.

Theorem B Let M be a complete Riemannian manifold such that Ric™ >

4(p HO for all x and the volume Vol(M) is infinite. Let N be a complete
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Riemannian manifold of non-positive scalar curvature. Then any p-harmonic
morphism ¢ : M — N of E,(¢) < oo is constant.

2. The Weitzenbock formula

First, we recall the Weitzenbock formula. Let (M™,g) and (N™, h) be Rie-
mannian manifolds with dimM = m > n = dim N. Let ¢ : M — N be a
smooth map and E = ¢ 'TN be the induced bundle over M. Then E has
a naturally induced metric connection V = ¢~ 'V and d¢ is a cross section
of Hom(T' M, E) over M. Since Hom(T'M, E) is canonically identified with
T*M ® E, d¢ is regarded as an E-valued 1-form. Let dy : A"(E) — A" TY(E)
be an anti-derivation and dy the formal adjoint of dv, where A" (F) is the space
of E-valued r-forms with an inner product (-,-) on M. Let {e;};=1,....m be local
orthonormal frame field on M and let {w'} be its dual coframe field. Locally,
the operators dy and dv are expressed by

m

dy = iwj AV and Oy = —Zi(ej)vej,

j=1 j=1

respectively, where ¢(X) is the interior product. The Laplacian A on A*(FE) is
defined by

(2.1) A = dvdy + ovdy.
Then we have the following Weitzenbock formula.

Lemma 2.1 (cf. [6], [7]). Let ¢ : (M™,g) — (N™, h) be an arbitrary smooth
map. Then the Weitzenbock formula is given by

(2:2) *%AMldﬂﬁl%_Q = |V(|do|P~2do)|* — (|del" e, A(|do|P~*dg)) + F(9),

where

(2.3) F(¢) =[d|**~* Y " h(dg(Ric" (ex)), d(ex))
k=1

— AP~ Y~ h(RN (de(e;), dd(ex))dd(er), db(e;)).

kyj=1
Let ¢ : (M, g) — (N, h) be a p-harmonic map. Then, from (1.2)
(24) 5w (|dpP~2de) = 0.
Then we have the following lemma.

Lemma 2.2 ([9]). Let M be a complete Riemannian manifold such that for
some constant C > 0, Ric™ > —C at all x € M and let N be a Riemannian
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manifold of non-positive sectional curvature. If ¢ : (M,g) — (N,h) is a p-
harmonic map, then

|dp|AM [P~ — Gp(¢) < —|dg[P> > h(d(Ric (e;)), dd(e;))
=1

< Cldg|”,
where Gp,(¢) = (do, dvdy (|dp[P~2d)). If ¢ is harmonic, then Go(¢) = 0.

Let z¢ be a point of M and fix it. We choose a Lipschitz continuous function
we on M such that 0 < wp(y) < 1 for any y € M, wy = 1 on B(xg,¥),
supp wye C B(xg, 2¢), limy— oo we = 1 and |dwy| < C’/E for some constant C' > 0,
where ¢ € Ry and B(xo,{) is the Riemannian open ball with radius ¢.

Lemma 2.3. Let M and N be complete Riemannian manifolds. For any
smooth map ¢ : (M, g) — (N, h), we have

[ k(@) <A [ widdudidollaldol?]
B(21) M

< as( [ wdlasy) ([ wpidastt?)’,

where A; = @lﬁ for some constant b. In particular, if ¢ : M — N satisfies
Ep(¢) < 00 and [, |d|d¢|?|? < oo, then

/ wiGp(p) = 0 (I — o).
M

Proof. It is well-known [10] that for a function f on M and for some constant
b >0,

(25) |dv (fd¢)| < bldf||dd).
By the Schwartz’s inequality with (2.5), we have

[ (w2de, sedy(dolP-2dg))] = | / (d (w2do), dy (|doP~2d8))|
B(21) B(21)
< / |y (w2dd)||d (|dél"2de)|
B(21)
< o / (wedewe||d P2 d
B(2l)

<4 / weldwe||d| % |d]do| B,
B(20)

where A, = @b? By the Holder inequality, we have

[ rldorlaol#iaiaott < ([ jdarlaor) ([ wbididelt?)”,
B(20) B(20) B(21)
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which completes the proof. O

3. Proof of Theorem A

Let M be a complete Riemannian manifold such that RicM > —C, where

C= 4(p b po. From Lemma 2.2, if we multiply by w? and integrate by parts,

we get
[ twtiael. aMlaor) - [ wiGy(o)
M M
(3.1 < =3 [ wlldolh(ds(Ric (e). dote)

< [ wtlaop.
M

On the other hand, by using the Schwartz’s inequality [(V, W)| < |V||W], we
have

/ (w2ldg], AM |dglP)
M

P P A P
AZ/ <|d¢|§dwe,wed|d¢|§>+—2/ w?|d|de| 5 |?
M P Jm

(3.2)

v

P P A P
s / weldg| ||y |dda|E| + 22 / w21d|dg) 2,
M P Jm

where Ay = %

/ (w?|dg], AM |d[Py - / WEG(0)

M M

~(Ar + Ay) / wz|dwz||d¢|%|d|d¢|%|+ﬁ / nd|dg| % 2
M

. From Lemma 2.3 and (3.2), we have

v

v

1 A p
= gclir ) [ JawnPlaol? + (22 = 501+ A) [ whldidsl P,
M p M
where 0 < € < W From (3.1), if we let [ — oo, then

A
(Z2 -5+ an) [ iR <c [ aop.
And if we let € — 0, then
A P
(3:3) 2 [ aslip < [ jaop.
P Jm M
Hence d|d¢|? € L?. Hence, from Lemma 2.3, if we let £ — 0o, then

(3.4) /we|dwelld¢|%|d|d¢|%|—>0 and /wap(qﬁ)—)O.
M M
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By the Rayleigh quotient theorem, i.e., % > o for any smooth function
M

f such that supp(f) C Q, a compact domain, and the Holder inequality, if we
put f = we|d¢|?, then

(35) o [ 4ol < [ |aasl# P

From (3.3) and (3.5), we have

(3.6) o / a6 < [ 1dldolEP < o [ 1aop
Since pg is the infimum of the spectrum, from (3.6),
(3.7) Anrldg|* = polde|?,
which implies that |d¢| is constant by the maximum principle [15]. Since
Vol(M) is infinite, E,(¢) < oo implies that d¢ = 0, i.e., ¢ is constant.
4. Proof of Theorem B

Let ¢ : (M™,g9) — (N™, h) (m > n) be a p-harmonic morphism with di-
lation A. Let {e;};=1,...m be a local orthonormal frame field on M such that
{ei}i=1,..n € Hy and {€;}i=n+1,....m € V. Then it is trivial from (1.3) that

(4.1) |dop|* = nA%.

Moreover, it is easy to see that

(4.2) Z h(de(Ric™ (e;)), do(e;)) = Ntry(Ric™ | i)
and .
(4.3) Z h(R™ (dg(e;), d(e;))de(e;), dp(e;)) = Nscaly o ¢,

where RicM |z is the Ricci tensor of M on the horizontal distribution H and
scaly is the scalar curvature of N. From (4.1), (4.2) and (4.3), we have the
following lemma.

Lemma 4.1 ([9]). Let ¢ : (M,g) — (N, h) be a p-harmonic morphism with
dilation . Then

(4.4) AMA2P 2= |[V(NP2do)|* — (do, Sy dv (NP 2do))
)\2ptrg (RicM|H) — APscaly o ¢.

Lemma 4.2 ([9]). Let M be a complete Riemannian manifold such that Ric™
> —C at allz € M and let N be a Riemannian manifold of non-positive scalar
curvature. If ¢ : (M, g) — (N, h) is a p-harmonic morphism, then

(4.5) nAAMNPTY —(dp, Sydy (WP 2dg)) < —APtr,(Ric™ ) < nOANP.



LIOUVILLE TYPE THEOREM FOR p-HARMONIC MAPS II 161

Proof of Theorem B. Let us put C = 4(1;);1)/10 in Lemma 4.2. By the same
process as in the proof of Theorem A, we have

(4.6) ApE = poAs.
By the maximum principle [15], X is constant. Since Vol(M) is infinite, A = 0,
i.e., ¢ is constant. (I
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