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LIOUVILLE TYPE THEOREM FOR p-HARMONIC MAPS II

Seoung Dal Jung

Abstract. Let M be a complete Riemannian manifold and let N be a
Riemannian manifold of non-positive sectional curvature. Assume that

RicM ≥ −
4(p−1)

p2
µ0 at all x ∈ M and Vol(M) is infinite, where µ0 > 0 is

the infimum of the spectrum of the Laplacian acting on L2-functions on
M . Then any p-harmonic map φ : M → N of finite p-energy is constant.
Also, we study Liouville type theorem for p-harmonic morphism.

1. Introduction

Let (M, g) and (N, h) be smooth Riemannian manifolds and let φ : M → N
be a smooth map. For a compact domain Ω ⊂ M , the p-energy Ep(φ; Ω) of φ
over Ω is defined by

(1.1) Ep(φ; Ω) =
1

p

∫

Ω

|dφ|pµM ,

where the differential dφ is a section of the bundle T ∗M ⊗ φ−1TN → M and
φ−1TN denotes the pull-back bundle via the map φ. The bundle T ∗M ⊗
φ−1TN → M carries the connection ∇ induced by the Levi-Civita connections
on M and N . A map φ : M → N is called p-harmonic if the p-tension field
τp(φ) = 0, which is defined by

τp(φ) = trg∇(|dφ|p−2dφ),(1.2)

where trg denote the trace with respect to the metric g. A p-harmonic map φ is
a critical point of the energy functional defined by (1.1) on any compact domain
Ω ⊂ M . When p = 2, p-harmonic maps are well-known to be harmonic maps.
Several studies are given for harmonic maps (see [5], [6], [7], [8], [10], [11], [12],
[13], [14], [16]). Let µ0 be the infimum of the spectrum of the Laplacian ∆M

acting on L2-functions on M and RicM be the Ricci tensor of M .
Recently, D. J. Moon, H. Liu and S. D. Jung [9] proved the following theorem

for p-harmonic maps.
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Theorem 1.1 ([9]). Let M be a complete Riemannian manifold such that

RicM ≥ − 4(p−1)
p2 µ0 for all x and RicM > − 4(p−1)

p2 µ0 at some point x0. Let N

be a complete Riemannian manifold of non-positive sectional curvature. Then

any p-harmonic map φ : M → N of Ep(φ) < ∞ is constant.

In Theorem 1.1, the condition RicM > − 4(p−1)
p2 µ0 at some point x0 is es-

sential. In this paper, we prove Theorem 1.1 when the volumn is infinite, i.e.,

Vol(M) = ∞ instead of RicM > − 4(p−1)
p2 µ0 at some point. Then we have the

following theorem.

Theorem A Let M be a complete Riemannian manifold such that RicM ≥

− 4(p−1)
p2 µ0 for all x and Vol(M) is infinite. Let N be a complete Riemannian

manifold of non-positive sectional curvature. Then any p-harmonic map φ :
M → N of Ep(φ) < ∞ is constant.

A map φ : (M, g) → (N, h) is a p-harmonic morphism if it pulls back (local)
p-harmonic functions on N to (local) p-harmonic functions on M , i.e., for any
function f : V ⊂ N → R if τp(f) = 0, then τp(f ◦ φ) = 0. It is well-known
[4, 8] that a non-constant map is a p-harmonic morphism if and only if it
is a horizontally weakly conformal p-harmonic map. A horizontally weakly

conformal map φ : (M, g) → (N, h) generalizes the notion of a Riemannian
submersion in that for any x ∈ M at which dφx 6= 0, the restriction dφx|Hx

:
Hx → Tφ(x)N is conformal and surjective, where the horizontal space Hx is
the orthogonal complement of Vx = Ker(dφx) in TxM . Trivially, if we put
Cφ = {x ∈ M | dφx = 0}, then there exists a function λ : M\Cφ → R

+ such
that

(1.3) h(dφ(X), dφ(Y )) = λ2g(X,Y ) ∀X,Y ∈ H.

Note that at the point x ∈ Cφ we can let λ(x) = 0 and obtain a continuous
function λ : M → R

+∪{0} which is called the dilation of a horizontally weakly
conformal map φ. A non-constant horizontally weakly conformal map φ is said
to be horizontally homothetic if the gradient of λ2(x) is vertical, meaning that
X(λ2) = 0 for any horizontal vector field X on M . In 2008, D. J. Moon, H.
Liu and S. D. Jung [9] also proved the following.

Theorem 1.2 ([9]). Let M be a complete Riemannian manifold such that

RicM ≥ − 4(p−1)
p2 µ0 for all x and RicM > − 4(p−1)

p2 µ0 at some point x0. Let

N be a complete Riemannian manifold of non-positive scalar curvature. Then

any p-harmonic morphism φ : M → N of Ep(φ) < ∞ is constant.

In this paper, we prove Theorem 1.2 under the condition Vol(M) = ∞

instead of RicM > − 4(p−1)
p2 µ0 at some point.

Theorem B Let M be a complete Riemannian manifold such that RicM ≥

− 4(p−1)
p2 µ0 for all x and the volume Vol(M) is infinite. Let N be a complete
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Riemannian manifold of non-positive scalar curvature. Then any p-harmonic

morphism φ : M → N of Ep(φ) < ∞ is constant.

2. The Weitzenböck formula

First, we recall the Weitzenböck formula. Let (Mm, g) and (Nn, h) be Rie-
mannian manifolds with dimM = m ≥ n = dimN . Let φ : M → N be a
smooth map and E = φ−1TN be the induced bundle over M . Then E has
a naturally induced metric connection ∇ ≡ φ−1∇N and dφ is a cross section
of Hom(TM,E) over M . Since Hom(TM,E) is canonically identified with
T ∗M ⊗ E, dφ is regarded as an E-valued 1-form. Let d∇ : Ar(E) → Ar+1(E)
be an anti-derivation and δ∇ the formal adjoint of d∇, where Ar(E) is the space
of E-valued r-forms with an inner product 〈·, ·〉 on M . Let {ei}i=1,...,m be local
orthonormal frame field on M and let {ωi} be its dual coframe field. Locally,
the operators d∇ and δ∇ are expressed by

d∇ =

m
∑

j=1

ωj ∧∇ej and δ∇ = −

m
∑

j=1

i(ej)∇ej ,

respectively, where i(X) is the interior product. The Laplacian ∆ on A∗(E) is
defined by

(2.1) ∆ = d∇δ∇ + δ∇d∇.

Then we have the following Weitzenböck formula.

Lemma 2.1 (cf. [6], [7]). Let φ : (Mm, g) → (Nn, h) be an arbitrary smooth

map. Then the Weitzenböck formula is given by

(2.2) −
1

2
∆M |dφ|2p−2 = |∇(|dφ|p−2dφ)|2 − 〈|dφ|p−2dφ,∆(|dφ|p−2dφ)〉+F (φ),

where

F (φ) =|dφ|2p−4
m
∑

k=1

h(dφ(RicM (ek)), dφ(ek))(2.3)

− |dφ|2p−4
m
∑

k,j=1

h(RN (dφ(ej), dφ(ek))dφ(ek), dφ(ej)).

Let φ : (M, g) → (N, h) be a p-harmonic map. Then, from (1.2)

(2.4) δ∇(|dφ|
p−2dφ) = 0.

Then we have the following lemma.

Lemma 2.2 ([9]). Let M be a complete Riemannian manifold such that for

some constant C ≥ 0, RicM ≥ −C at all x ∈ M and let N be a Riemannian



158 SEOUNG DAL JUNG

manifold of non-positive sectional curvature. If φ : (M, g) → (N, h) is a p-
harmonic map, then

|dφ|∆M |dφ|p−1 −Gp(φ) ≤ −|dφ|p−2
m
∑

i=1

h(dφ(RicM (ei)), dφ(ei))

≤ C|dφ|p,

where Gp(φ) = 〈dφ, δ∇d∇(|dφ|p−2dφ)〉. If φ is harmonic, then G2(φ) = 0.

Let x0 be a point of M and fix it. We choose a Lipschitz continuous function
ωℓ on M such that 0 ≤ ωℓ(y) ≤ 1 for any y ∈ M , ωℓ ≡ 1 on B(x0, ℓ),

supp ωℓ ⊂ B(x0, 2ℓ), limℓ→∞ ωℓ = 1 and |dωℓ| ≤ C̃/ℓ for some constant C̃ > 0,
where ℓ ∈ R+ and B(x0, ℓ) is the Riemannian open ball with radius ℓ.

Lemma 2.3. Let M and N be complete Riemannian manifolds. For any

smooth map φ : (M, g) → (N, h), we have

|

∫

B(2l)

ω2
l Gp(φ)| ≤ A1

∫

M

ωℓ|dωℓ||dφ|
p
2 |d|dφ|

p
2 |

≤ A1

(

∫

M

|dωℓ|
2|dφ|p

)
1

2

(

∫

M

ω2
ℓ |d|dφ|

p

2 |2
)

1

2

,

where A1 = 4(p−2)
p

b2 for some constant b. In particular, if φ : M → N satisfies

Ep(φ) < ∞ and
∫

M
|d|dφ|

p

2 |2 < ∞, then
∫

M

ω2
l Gp(φ) → 0 (l → ∞).

Proof. It is well-known [10] that for a function f on M and for some constant
b > 0,

(2.5) |d∇(fdφ)| ≤ b|df ||dφ|.

By the Schwartz’s inequality with (2.5), we have

|

∫

B(2l)

〈ω2
ℓdφ, δ∇d∇(|dφ|p−2dφ)〉| = |

∫

B(2l)

〈d∇(ω2
ℓdφ), d∇(|dφ|p−2dφ)〉|

≤

∫

B(2l)

|d∇(ω
2
ℓ dφ)||d∇(|dφ|p−2dφ)|

≤ 2b2
∫

B(2l)

|ωℓdωℓ||d|dφ|
p−2||dφ|2

≤ A1

∫

B(2l)

ωℓ|dωℓ||dφ|
p

2 |d|dφ|
p

2 |,

where A1 = 4(p−2)
p

b2. By the Hölder inequality, we have
∫

B(2l)

ωℓ|dωℓ||dφ|
p

2 |d|dφ|
p

2 | ≤
(

∫

B(2l)

|dωℓ|
2|dφ|p

)
1

2

(

∫

B(2l)

ω2
ℓ |d|dφ|

p

2 |2
)

1

2

,
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which completes the proof. �

3. Proof of Theorem A

Let M be a complete Riemannian manifold such that RicM ≥ −C, where

C = 4(p−1)
p2 µ0. From Lemma 2.2, if we multiply by ω2

ℓ and integrate by parts,
we get

∫

M

〈ω2
ℓ |dφ|,∆

M |dφ|p−1〉 −

∫

M

ω2
ℓGp(φ)

≤ −

m
∑

i=1

∫

M

ω2
ℓ |dφ|

p−2h(dφ(RicM (ei)), dφ(ei))(3.1)

≤ C

∫

M

ω2
ℓ |dφ|

p.

On the other hand, by using the Schwartz’s inequality |〈V,W 〉| ≤ |V ||W |, we
have

∫

M

〈ω2
ℓ |dφ|,∆

M |dφ|p−1〉

= A2

∫

M

〈|dφ|
p

2 dωℓ, ωℓd|dφ|
p

2 〉+
A2

p

∫

M

ω2
ℓ |d|dφ|

p

2 |2

≥ −A2

∫

M

ωℓ|dφ|
p
2 ||dωℓ||d|dφ|

p
2 |+

A2

p

∫

M

ω2
ℓ |d|dφ|

p
2 |2,(3.2)

where A2 = 4(p−1)
p

. From Lemma 2.3 and (3.2), we have
∫

M

〈ω2
l |dφ|,∆

M |dφ|p−1〉 −

∫

M

ω2
l Gp(φ)

≥ − (A1 +A2)

∫

M

ωl|dωl||dφ|
p

2 |d|dφ|
p

2 |+
A2

p

∫

M

|ωld|dφ|
p

2 |2

≥ −
1

2ǫ
(A1 +A2)

∫

M

|dωl|
2|dφ|p +

(A2

p
−

ǫ

2
(A1 +A2)

)

∫

M

ω2
l |d|dφ|

p

2 |2,

where 0 < ǫ < 2A2

p(A1+A2)
. From (3.1), if we let l → ∞, then

(A2

p
−

ǫ

2
(A1 +A2)

)

∫

M

|d|dφ|
p

2 |2 ≤ C

∫

M

|dφ|p.

And if we let ǫ → 0, then

A2

p

∫

M

|d|dφ|
p
2 |2 ≤ C

∫

M

|dφ|p.(3.3)

Hence d|dφ|
p

2 ∈ L2. Hence, from Lemma 2.3, if we let ℓ → ∞, then
∫

M

ωℓ|dωℓ||dφ|
p

2 |d|dφ|
p

2 | → 0 and

∫

M

ω2
l Gp(φ) → 0.(3.4)
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By the Rayleigh quotient theorem, i.e.,
∫
M

〈df,df〉∫
M

f2
≥ µ0 for any smooth function

f such that supp(f) ⊂ Ω, a compact domain, and the Hölder inequality, if we

put f = ωℓ|dφ|
p
2 , then

µ0

∫

M

|dφ|p ≤

∫

M

|d|dφ|
p
2 |2.(3.5)

From (3.3) and (3.5), we have

µ0

∫

M

|dφ|p ≤

∫

M

|d|dφ|
p

2 |2 ≤ µ0

∫

M

|dφ|p.(3.6)

Since µ0 is the infimum of the spectrum, from (3.6),

∆M |dφ|
p

2 = µ0|dφ|
p

2 ,(3.7)

which implies that |dφ| is constant by the maximum principle [15]. Since
Vol(M) is infinite, Ep(φ) < ∞ implies that dφ = 0, i.e., φ is constant.

4. Proof of Theorem B

Let φ : (Mm, g) → (Nn, h) (m ≥ n) be a p-harmonic morphism with di-
lation λ. Let {ei}i=1,...,m be a local orthonormal frame field on M such that
{ei}i=1,...,n ∈ Hx and {ei}i=n+1,...,m ∈ Vx. Then it is trivial from (1.3) that

(4.1) |dφ|2 = nλ2.

Moreover, it is easy to see that

(4.2)
m
∑

i=1

h(dφ(RicM (ei)), dφ(ei)) = λ2trg(RicM |H)

and

(4.3)

m
∑

i,j=1

h(RN (dφ(ei), dφ(ej))dφ(ej), dφ(ei)) = λ4scalN ◦ φ,

where RicM |H is the Ricci tensor of M on the horizontal distribution H and
scalN is the scalar curvature of N . From (4.1), (4.2) and (4.3), we have the
following lemma.

Lemma 4.1 ([9]). Let φ : (M, g) → (N, h) be a p-harmonic morphism with

dilation λ. Then

−
1

2
n∆Mλ2p−2 = |∇(λp−2dφ)|2 − 〈dφ, δ∇d∇(λp−2dφ)〉(4.4)

+ λ2ptrg(RicM |H)− λ2pscalN ◦ φ.

Lemma 4.2 ([9]). Let M be a complete Riemannian manifold such that RicM

≥ −C at all x ∈ M and let N be a Riemannian manifold of non-positive scalar

curvature. If φ : (M, g) → (N, h) is a p-harmonic morphism, then

(4.5) nλ∆Mλp−1 − 〈dφ, δ∇d∇(λp−2dφ)〉 ≤ −λptrg(RicM |H) ≤ nCλp.
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Proof of Theorem B. Let us put C = 4(p−1)
p2 µ0 in Lemma 4.2. By the same

process as in the proof of Theorem A, we have

∆Mλ
p
2 = µ0λ

p
2 .(4.6)

By the maximum principle [15], λ is constant. Since Vol(M) is infinite, λ = 0,
i.e., φ is constant. �
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