LIOUVILLE TYPE THEOREM FOR p-HARMONIC MAPS II

SEoung Dal Jung

Abstract

Let M be a complete Riemannian manifold and let N be a Riemannian manifold of non-positive sectional curvature. Assume that $\operatorname{Ric}^{M} \geq-\frac{4(p-1)}{p^{2}} \mu_{0}$ at all $x \in M$ and $\operatorname{Vol}(M)$ is infinite, where $\mu_{0}>0$ is the infimum of the spectrum of the Laplacian acting on L^{2}-functions on M. Then any p-harmonic map $\phi: M \rightarrow N$ of finite p-energy is constant. Also, we study Liouville type theorem for p-harmonic morphism.

1. Introduction

Let (M, g) and (N, h) be smooth Riemannian manifolds and let $\phi: M \rightarrow N$ be a smooth map. For a compact domain $\Omega \subset M$, the p-energy $E_{p}(\phi ; \Omega)$ of ϕ over Ω is defined by

$$
\begin{equation*}
E_{p}(\phi ; \Omega)=\frac{1}{p} \int_{\Omega}|d \phi|^{p} \mu_{M} \tag{1.1}
\end{equation*}
$$

where the differential $d \phi$ is a section of the bundle $T^{*} M \otimes \phi^{-1} T N \rightarrow M$ and $\phi^{-1} T N$ denotes the pull-back bundle via the map ϕ. The bundle $T^{*} M \otimes$ $\phi^{-1} T N \rightarrow M$ carries the connection ∇ induced by the Levi-Civita connections on M and N. A map $\phi: M \rightarrow N$ is called p-harmonic if the p-tension field $\tau_{p}(\phi)=0$, which is defined by

$$
\begin{equation*}
\tau_{p}(\phi)=\operatorname{tr}_{g} \nabla\left(|d \phi|^{p-2} d \phi\right) \tag{1.2}
\end{equation*}
$$

where tr_{g} denote the trace with respect to the metric g. A p-harmonic map ϕ is a critical point of the energy functional defined by (1.1) on any compact domain $\Omega \subset M$. When $p=2, p$-harmonic maps are well-known to be harmonic maps. Several studies are given for harmonic maps (see [5], [6], [7], [8], [10], [11], [12], [13], [14], [16]). Let μ_{0} be the infimum of the spectrum of the Laplacian Δ_{M} acting on L^{2}-functions on M and Ric ${ }^{M}$ be the Ricci tensor of M.

Recently, D. J. Moon, H. Liu and S. D. Jung [9] proved the following theorem for p-harmonic maps.

Received June 24, 2013.
2010 Mathematics Subject Classification. 53C43, 58E20.
Key words and phrases. p-harmonic map, p-harmonic morphism, Liouville type theorem.

Theorem 1.1 ([9]). Let M be a complete Riemannian manifold such that Ric $^{M} \geq-\frac{4(p-1)}{p^{2}} \mu_{0}$ for all x and Ric $^{M}>-\frac{4(p-1)}{p^{2}} \mu_{0}$ at some point x_{0}. Let N be a complete Riemannian manifold of non-positive sectional curvature. Then any p-harmonic map $\phi: M \rightarrow N$ of $E_{p}(\phi)<\infty$ is constant.

In Theorem 1.1, the condition $\operatorname{Ric}^{M}>-\frac{4(p-1)}{p^{2}} \mu_{0}$ at some point x_{0} is essential. In this paper, we prove Theorem 1.1 when the volumn is infinite, i.e., $\operatorname{Vol}(M)=\infty$ instead of $\operatorname{Ric}^{M}>-\frac{4(p-1)}{p^{2}} \mu_{0}$ at some point. Then we have the following theorem.

Theorem A Let M be a complete Riemannian manifold such that Ric ${ }^{M} \geq$ $-\frac{4(p-1)}{p^{2}} \mu_{0}$ for all x and $\operatorname{Vol}(\mathrm{M})$ is infinite. Let N be a complete Riemannian manifold of non-positive sectional curvature. Then any p-harmonic map ϕ : $M \rightarrow N$ of $E_{p}(\phi)<\infty$ is constant.

A map $\phi:(M, g) \rightarrow(N, h)$ is a p-harmonic morphism if it pulls back (local) p-harmonic functions on N to (local) p-harmonic functions on M, i.e., for any function $f: V \subset N \rightarrow \mathbb{R}$ if $\tau_{p}(f)=0$, then $\tau_{p}(f \circ \phi)=0$. It is well-known $[4,8]$ that a non-constant map is a p-harmonic morphism if and only if it is a horizontally weakly conformal p-harmonic map. A horizontally weakly conformal map $\phi:(M, g) \rightarrow(N, h)$ generalizes the notion of a Riemannian submersion in that for any $x \in M$ at which $d \phi_{x} \neq 0$, the restriction $\left.d \phi_{x}\right|_{H_{x}}$: $H_{x} \rightarrow T_{\phi(x)} N$ is conformal and surjective, where the horizontal space H_{x} is the orthogonal complement of $V_{x}=\operatorname{Ker}\left(d \phi_{x}\right)$ in $T_{x} M$. Trivially, if we put $C_{\phi}=\left\{x \in M \mid d \phi_{x}=0\right\}$, then there exists a function $\lambda: M \backslash C_{\phi} \rightarrow \mathbb{R}^{+}$such that

$$
\begin{equation*}
h(d \phi(X), d \phi(Y))=\lambda^{2} g(X, Y) \quad \forall X, Y \in H \tag{1.3}
\end{equation*}
$$

Note that at the point $x \in C_{\phi}$ we can let $\lambda(x)=0$ and obtain a continuous function $\lambda: M \rightarrow \mathbb{R}^{+} \cup\{0\}$ which is called the dilation of a horizontally weakly conformal map ϕ. A non-constant horizontally weakly conformal map ϕ is said to be horizontally homothetic if the gradient of $\lambda^{2}(x)$ is vertical, meaning that $X\left(\lambda^{2}\right)=0$ for any horizontal vector field X on M. In 2008, D. J. Moon, H. Liu and S. D. Jung [9] also proved the following.

Theorem 1.2 ([9]). Let M be a complete Riemannian manifold such that Ric $^{M} \geq-\frac{4(p-1)}{p^{2}} \mu_{0}$ for all x and Ric $^{M}>-\frac{4(p-1)}{p^{2}} \mu_{0}$ at some point x_{0}. Let N be a complete Riemannian manifold of non-positive scalar curvature. Then any p-harmonic morphism $\phi: M \rightarrow N$ of $E_{p}(\phi)<\infty$ is constant.

In this paper, we prove Theorem 1.2 under the condition $\operatorname{Vol}(M)=\infty$ instead of $\operatorname{Ric}^{M}>-\frac{4(p-1)}{p^{2}} \mu_{0}$ at some point.

Theorem B Let M be a complete Riemannian manifold such that Ric ${ }^{M} \geq$ $-\frac{4(p-1)}{p^{2}} \mu_{0}$ for all x and the volume $\operatorname{Vol}(\mathrm{M})$ is infinite. Let N be a complete

Riemannian manifold of non-positive scalar curvature. Then any p-harmonic morphism $\phi: M \rightarrow N$ of $E_{p}(\phi)<\infty$ is constant.

2. The Weitzenböck formula

First, we recall the Weitzenböck formula. Let $\left(M^{m}, g\right)$ and $\left(N^{n}, h\right)$ be Riemannian manifolds with $\operatorname{dim} M=m \geq n=\operatorname{dim} N$. Let $\phi: M \rightarrow N$ be a smooth map and $E=\phi^{-1} T N$ be the induced bundle over M. Then E has a naturally induced metric connection $\nabla \equiv \phi^{-1} \nabla^{N}$ and $d \phi$ is a cross section of $\operatorname{Hom}(T M, E)$ over M. Since $\operatorname{Hom}(T M, E)$ is canonically identified with $T^{*} M \otimes E, d \phi$ is regarded as an E-valued 1-form. Let $d_{\nabla}: A^{r}(E) \rightarrow A^{r+1}(E)$ be an anti-derivation and δ_{∇} the formal adjoint of d_{∇}, where $A^{r}(E)$ is the space of E-valued r-forms with an inner product $\langle\cdot, \cdot\rangle$ on M. Let $\left\{e_{i}\right\}_{i=1, \ldots, m}$ be local orthonormal frame field on M and let $\left\{\omega^{i}\right\}$ be its dual coframe field. Locally, the operators d_{∇} and δ_{∇} are expressed by

$$
d_{\nabla}=\sum_{j=1}^{m} \omega^{j} \wedge \nabla_{e_{j}} \quad \text { and } \quad \delta_{\nabla}=-\sum_{j=1}^{m} i\left(e_{j}\right) \nabla_{e_{j}}
$$

respectively, where $i(X)$ is the interior product. The Laplacian Δ on $A^{*}(E)$ is defined by

$$
\begin{equation*}
\Delta=d_{\nabla} \delta_{\nabla}+\delta_{\nabla} d_{\nabla} \tag{2.1}
\end{equation*}
$$

Then we have the following Weitzenböck formula.
Lemma 2.1 (cf. [6], [7]). Let $\phi:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)$ be an arbitrary smooth map. Then the Weitzenböck formula is given by
(2.2) $\left.-\frac{1}{2} \Delta^{M}|d \phi|^{2 p-2}=\left|\nabla\left(|d \phi|^{p-2} d \phi\right)\right|^{2}-\left.\langle | d \phi\right|^{p-2} d \phi, \Delta\left(|d \phi|^{p-2} d \phi\right)\right\rangle+F(\phi)$, where

$$
\begin{align*}
F(\phi)= & |d \phi|^{2 p-4} \sum_{k=1}^{m} h\left(d \phi\left(\operatorname{Ric}^{M}\left(e_{k}\right)\right), d \phi\left(e_{k}\right)\right) \tag{2.3}\\
& -|d \phi|^{2 p-4} \sum_{k, j=1}^{m} h\left(R^{N}\left(d \phi\left(e_{j}\right), d \phi\left(e_{k}\right)\right) d \phi\left(e_{k}\right), d \phi\left(e_{j}\right)\right) .
\end{align*}
$$

Let $\phi:(M, g) \rightarrow(N, h)$ be a p-harmonic map. Then, from (1.2)

$$
\begin{equation*}
\delta_{\nabla}\left(|d \phi|^{p-2} d \phi\right)=0 \tag{2.4}
\end{equation*}
$$

Then we have the following lemma.
Lemma 2.2 ([9]). Let M be a complete Riemannian manifold such that for some constant $C \geq 0$, Ric $^{M} \geq-C$ at all $x \in M$ and let N be a Riemannian
manifold of non-positive sectional curvature. If $\phi:(M, g) \rightarrow(N, h)$ is a pharmonic map, then

$$
\begin{aligned}
|d \phi| \Delta^{M}|d \phi|^{p-1}-G_{p}(\phi) & \leq-|d \phi|^{p-2} \sum_{i=1}^{m} h\left(d \phi\left(\operatorname{Ric}^{M}\left(e_{i}\right)\right), d \phi\left(e_{i}\right)\right) \\
& \leq C|d \phi|^{p}
\end{aligned}
$$

where $G_{p}(\phi)=\left\langle d \phi, \delta_{\nabla} d_{\nabla}\left(|d \phi|^{p-2} d \phi\right)\right\rangle$. If ϕ is harmonic, then $G_{2}(\phi)=0$.
Let x_{0} be a point of M and fix it. We choose a Lipschitz continuous function ω_{ℓ} on M such that $0 \leq \omega_{\ell}(y) \leq 1$ for any $y \in M, \omega_{\ell} \equiv 1$ on $B\left(x_{0}, \ell\right)$, $\operatorname{supp} \omega_{\ell} \subset B\left(x_{0}, 2 \ell\right), \lim _{\ell \rightarrow \infty} \omega_{\ell}=1$ and $\left|d \omega_{\ell}\right| \leq \tilde{C} / \ell$ for some constant $\tilde{C}>0$, where $\ell \in \mathbb{R}_{+}$and $B\left(x_{0}, \ell\right)$ is the Riemannian open ball with radius ℓ.

Lemma 2.3. Let M and N be complete Riemannian manifolds. For any smooth map $\phi:(M, g) \rightarrow(N, h)$, we have

$$
\begin{aligned}
\left|\int_{B(2 l)} \omega_{l}^{2} G_{p}(\phi)\right| & \left.\leq\left. A_{1} \int_{M} \omega_{\ell}\left|d \omega_{\ell}\right||d \phi|^{\frac{p}{2}}|d| d \phi\right|^{\frac{p}{2}} \right\rvert\, \\
& \leq A_{1}\left(\int_{M}\left|d \omega_{\ell}\right|^{2}|d \phi|^{p}\right)^{\frac{1}{2}}\left(\left.\left.\int_{M} \omega_{\ell}^{2}|d| d \phi\right|^{\frac{p}{2}}\right|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

where $A_{1}=\frac{4(p-2)}{p} b^{2}$ for some constant b. In particular, if $\phi: M \rightarrow N$ satisfies $E_{p}(\phi)<\infty$ and $\left.\left.\int_{M}|d| d \phi\right|^{\frac{p}{2}}\right|^{2}<\infty$, then

$$
\int_{M} \omega_{l}^{2} G_{p}(\phi) \rightarrow 0(l \rightarrow \infty)
$$

Proof. It is well-known [10] that for a function f on M and for some constant $b>0$,

$$
\begin{equation*}
\left|d_{\nabla}(f d \phi)\right| \leq b|d f||d \phi| \tag{2.5}
\end{equation*}
$$

By the Schwartz's inequality with (2.5), we have

$$
\begin{aligned}
\left|\int_{B(2 l)}\left\langle\omega_{\ell}^{2} d \phi, \delta_{\nabla} d_{\nabla}\left(|d \phi|^{p-2} d \phi\right)\right\rangle\right| & =\left|\int_{B(2 l)}\left\langle d_{\nabla}\left(\omega_{\ell}^{2} d \phi\right), d_{\nabla}\left(|d \phi|^{p-2} d \phi\right)\right\rangle\right| \\
& \leq \int_{B(2 l)}\left|d_{\nabla}\left(\omega_{\ell}^{2} d \phi\right)\right|\left|d_{\nabla}\left(|d \phi|^{p-2} d \phi\right)\right| \\
& \leq\left.\left. 2 b^{2} \int_{B(2 l)}\left|\omega_{\ell} d \omega_{\ell}\right||d| d \phi\right|^{p-2}| | d \phi\right|^{2} \\
& \left.\leq A_{1} \int_{B(2 l)} \omega_{\ell}\left|d \omega_{\ell} \||d \phi|^{\frac{p}{2}}\right| d|d \phi|^{\frac{p}{2}} \right\rvert\,
\end{aligned}
$$

where $A_{1}=\frac{4(p-2)}{p} b^{2}$. By the Hölder inequality, we have

$$
\left.\int_{B(2 l)} \omega_{\ell}\left|d \omega_{\ell}\right||d \phi|^{\frac{p}{2}}|d| d \phi\right|^{\frac{p}{2}} \left\lvert\, \leq\left(\int_{B(2 l)}\left|d \omega_{\ell}\right|^{2}|d \phi|^{p}\right)^{\frac{1}{2}}\left(\left.\left.\int_{B(2 l)} \omega_{\ell}^{2}|d| d \phi\right|^{\frac{p}{2}}\right|^{2}\right)^{\frac{1}{2}}\right.
$$

which completes the proof.

3. Proof of Theorem A

Let M be a complete Riemannian manifold such that $\operatorname{Ric}^{M} \geq-C$, where $C=\frac{4(p-1)}{p^{2}} \mu_{0}$. From Lemma 2.2, if we multiply by ω_{ℓ}^{2} and integrate by parts, we get

$$
\begin{align*}
& \left.\left.\int_{M}\left\langle\omega_{\ell}^{2}\right| d \phi\left|, \Delta^{M}\right| d \phi\right|^{p-1}\right\rangle-\int_{M} \omega_{\ell}^{2} G_{p}(\phi) \\
\leq & -\sum_{i=1}^{m} \int_{M} \omega_{\ell}^{2}|d \phi|^{p-2} h\left(d \phi\left(\operatorname{Ric}^{M}\left(e_{i}\right)\right), d \phi\left(e_{i}\right)\right) \tag{3.1}\\
\leq & C \int_{M} \omega_{\ell}^{2}|d \phi|^{p} .
\end{align*}
$$

On the other hand, by using the Schwartz's inequality $|\langle V, W\rangle| \leq|V||W|$, we have

$$
\begin{align*}
& \left.\left.\int_{M}\left\langle\omega_{\ell}^{2}\right| d \phi\left|, \Delta^{M}\right| d \phi\right|^{p-1}\right\rangle \\
= & \left.\left.A_{2} \int_{M}\langle | d \phi\right|^{\frac{p}{2}} d \omega_{\ell}, \omega_{\ell} d|d \phi|^{\frac{p}{2}}\right\rangle+\left.\left.\frac{A_{2}}{p} \int_{M} \omega_{\ell}^{2}|d| d \phi\right|^{\frac{p}{2}}\right|^{2} \\
\geq & -\left.A_{2} \int_{M} \omega_{\ell}|d \phi|^{\frac{p}{2}}| | d \omega_{\ell}| | d|d \phi|^{\frac{p}{2}}\left|+\frac{A_{2}}{p} \int_{M} \omega_{\ell}^{2}\right| d|d \phi|^{\frac{p}{2}}\right|^{2}, \tag{3.2}
\end{align*}
$$

where $A_{2}=\frac{4(p-1)}{p}$. From Lemma 2.3 and (3.2), we have

$$
\begin{aligned}
& \left.\left.\int_{M}\left\langle\omega_{l}^{2}\right| d \phi\left|, \Delta^{M}\right| d \phi\right|^{p-1}\right\rangle-\int_{M} \omega_{l}^{2} G_{p}(\phi) \\
\geq & -\left.\left.\left(A_{1}+A_{2}\right) \int_{M} \omega_{l}\left|d \omega_{l}\right||d \phi|^{\frac{p}{2}}|d| d \phi\right|^{\frac{p}{2}}\left|+\frac{A_{2}}{p} \int_{M}\right| \omega_{l} d|d \phi|^{\frac{p}{2}}\right|^{2} \\
\geq & -\frac{1}{2 \epsilon}\left(A_{1}+A_{2}\right) \int_{M}\left|d \omega_{l}\right|^{2}|d \phi|^{p}+\left.\left.\left(\frac{A_{2}}{p}-\frac{\epsilon}{2}\left(A_{1}+A_{2}\right)\right) \int_{M} \omega_{l}^{2}|d| d \phi\right|^{\frac{p}{2}}\right|^{2},
\end{aligned}
$$

where $0<\epsilon<\frac{2 A_{2}}{p\left(A_{1}+A_{2}\right)}$. From (3.1), if we let $l \rightarrow \infty$, then

$$
\left.\left.\left(\frac{A_{2}}{p}-\frac{\epsilon}{2}\left(A_{1}+A_{2}\right)\right) \int_{M}|d| d \phi\right|^{\frac{p}{2}}\right|^{2} \leq C \int_{M}|d \phi|^{p}
$$

And if we let $\epsilon \rightarrow 0$, then

$$
\begin{equation*}
\left.\left.\frac{A_{2}}{p} \int_{M}|d| d \phi\right|^{\frac{p}{2}}\right|^{2} \leq C \int_{M}|d \phi|^{p} \tag{3.3}
\end{equation*}
$$

Hence $d|d \phi|^{\frac{p}{2}} \in L^{2}$. Hence, from Lemma 2.3, if we let $\ell \rightarrow \infty$, then

$$
\begin{equation*}
\left.\left.\int_{M} \omega_{\ell}\left|d \omega_{\ell}\right||d \phi|^{\frac{p}{2}}|d| d \phi\right|^{\frac{p}{2}} \right\rvert\, \rightarrow 0 \quad \text { and } \quad \int_{M} \omega_{l}^{2} G_{p}(\phi) \rightarrow 0 \tag{3.4}
\end{equation*}
$$

By the Rayleigh quotient theorem, i.e., $\frac{\int_{M}\langle d f, d f\rangle}{\int_{M} f^{2}} \geq \mu_{0}$ for any smooth function f such that $\operatorname{supp}(f) \subset \Omega$, a compact domain, and the Hölder inequality, if we put $f=\omega_{\ell}|d \phi|^{\frac{p}{2}}$, then

$$
\begin{equation*}
\mu_{0} \int_{M}|d \phi|^{p} \leq\left.\left.\int_{M}|d| d \phi\right|^{\frac{p}{2}}\right|^{2} \tag{3.5}
\end{equation*}
$$

From (3.3) and (3.5), we have

$$
\begin{equation*}
\mu_{0} \int_{M}|d \phi|^{p} \leq\left.\left.\int_{M}|d| d \phi\right|^{\frac{p}{2}}\right|^{2} \leq \mu_{0} \int_{M}|d \phi|^{p} . \tag{3.6}
\end{equation*}
$$

Since μ_{0} is the infimum of the spectrum, from (3.6),

$$
\begin{equation*}
\Delta_{M}|d \phi|^{\frac{p}{2}}=\mu_{0}|d \phi|^{\frac{p}{2}}, \tag{3.7}
\end{equation*}
$$

which implies that $|d \phi|$ is constant by the maximum principle [15]. Since $\operatorname{Vol}(M)$ is infinite, $E_{p}(\phi)<\infty$ implies that $d \phi=0$, i.e., ϕ is constant.

4. Proof of Theorem B

Let $\phi:\left(M^{m}, g\right) \rightarrow\left(N^{n}, h\right)(m \geq n)$ be a p-harmonic morphism with dilation λ. Let $\left\{e_{i}\right\}_{i=1, \ldots, m}$ be a local orthonormal frame field on M such that $\left\{e_{i}\right\}_{i=1, \ldots, n} \in H_{x}$ and $\left\{e_{i}\right\}_{i=n+1, \ldots, m} \in V_{x}$. Then it is trivial from (1.3) that

$$
\begin{equation*}
|d \phi|^{2}=n \lambda^{2} . \tag{4.1}
\end{equation*}
$$

Moreover, it is easy to see that

$$
\begin{equation*}
\sum_{i=1}^{m} h\left(d \phi\left(\operatorname{Ric}^{M}\left(e_{i}\right)\right), d \phi\left(e_{i}\right)\right)=\lambda^{2} \operatorname{tr}_{g}\left(\left.\operatorname{Ric}^{M}\right|_{H}\right) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i, j=1}^{m} h\left(R^{N}\left(d \phi\left(e_{i}\right), d \phi\left(e_{j}\right)\right) d \phi\left(e_{j}\right), d \phi\left(e_{i}\right)\right)=\lambda^{4} \operatorname{scal}_{N} \circ \phi, \tag{4.3}
\end{equation*}
$$

where $\left.\operatorname{Ric}^{M}\right|_{H}$ is the Ricci tensor of M on the horizontal distribution H and scal_{N} is the scalar curvature of N. From (4.1), (4.2) and (4.3), we have the following lemma.

Lemma 4.1 ([9]). Let $\phi:(M, g) \rightarrow(N, h)$ be a p-harmonic morphism with dilation λ. Then

$$
\begin{align*}
-\frac{1}{2} n \Delta^{M} \lambda^{2 p-2}= & \left|\nabla\left(\lambda^{p-2} d \phi\right)\right|^{2}-\left\langle d \phi, \delta_{\nabla} d_{\nabla}\left(\lambda^{p-2} d \phi\right)\right\rangle \tag{4.4}\\
& +\lambda^{2 p} \operatorname{tr}_{g}\left(\left.\operatorname{Ric}^{M}\right|_{H}\right)-\lambda^{2 p} \operatorname{scal}_{N} \circ \phi .
\end{align*}
$$

Lemma 4.2 ([9]). Let M be a complete Riemannian manifold such that Ric ${ }^{M}$ $\geq-C$ at all $x \in M$ and let N be a Riemannian manifold of non-positive scalar curvature. If $\phi:(M, g) \rightarrow(N, h)$ is a p-harmonic morphism, then

$$
\begin{equation*}
n \lambda \Delta^{M} \lambda^{p-1}-\left\langle d \phi, \delta_{\nabla} d_{\nabla}\left(\lambda^{p-2} d \phi\right)\right\rangle \leq-\lambda^{p} \operatorname{tr}_{g}\left(\left.\operatorname{Ric}^{M}\right|_{H}\right) \leq n C \lambda^{p} \tag{4.5}
\end{equation*}
$$

Proof of Theorem B. Let us put $C=\frac{4(p-1)}{p^{2}} \mu_{0}$ in Lemma 4.2. By the same process as in the proof of Theorem A, we have

$$
\begin{equation*}
\Delta_{M} \lambda^{\frac{p}{2}}=\mu_{0} \lambda^{\frac{p}{2}} \tag{4.6}
\end{equation*}
$$

By the maximum principle [15], λ is constant. Since $\operatorname{Vol}(M)$ is infinite, $\lambda=0$, i.e., ϕ is constant.

Acknowledgements. This research was supported by the 2013 scientific promotion program funded by Jeju National University.

References

[1] P. Bérard, A note on Bochner type theorems for complete manifolds, Manuscripta Math. 69 (1990), no. 3, 261-266.
[2] G. Choi and G. Yun, A theorem of Liouville type for harmonic morphisms, Geom. Dedicata 84 (2001), no. 1-3, 179-182.
[3] , A theorem of Liouville type for p-harmonic morphisms, Geom. Dedicata 101 (2003), 55-59.
[4] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 2, 107-144.
[5] S. D. Jung, Harmonic maps of complete Riemannian manifolds, Nihonkai Math. J. 8 (1997), no. 2, 147-154.
[6] S. D. Jung, D. J. Moon, and H. Liu, A Liouville type theorem for harmonic morphisms, J. Korean Math. Soc. 44 (2007), no. 4, 941-947.
[7] A. Kasue and T. Washio, Growth of equivariant harmonic maps and harmonic morphisms, Osaka J. Math. 27 (1990), no. 4, 899-928.
[8] E. Loubeau, On p-harmonic morphisms, Differential Geom. Appl. 12 (2000), no. 3, 219229.
[9] D. J. Moon, H. Liu, and S. D. Jung, Liouville type theorems for p-harmonic maps, J. Math. Anal. Appl. 342 (2008), no. 1, 354-360.
[10] N. Nakauchi, A Liouville type theorem for p-harmonic maps, Osaka J. Math. 35 (1998), no. 2, 303-312.
[11] N. Nakauchi and S. Takakuwa, A remark on p-harmonic maps, Nonlinear Anal. 25 (1995), no. 2, 169-185.
[12] R. M. Schoen and S. T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Comment. Math. Helv. 51 (1976), no. 3, 333-341.
[13] H. Takeuchi, Stability and Liouville theorems of p-harmonic maps, Japan. J. Math. (N.S.) $\mathbf{1 7}$ (1991), no. 2, 317-332.
[14] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.
[15] , Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659-670.
[16] H. H. Wu, The Bochner technique in differential geometry, Math. Rep. 3 (1988), no. 2, 289-538.

Department of Mathematics
Jeju National University
Jeju 690-756, Korea
E-mail address: sdjung@jejunu.ac.kr

