LIOUVILLE TYPE THEOREM FOR p-HARMONIC MAPS II

SEOUNG DAL JUNG

ABSTRACT. Let M be a complete Riemannian manifold and let N be a Riemannian manifold of non-positive sectional curvature. Assume that $Ric^M \geq -\frac{4(p-1)}{p^2}\mu_0$ at all $x \in M$ and $\operatorname{Vol}(M)$ is infinite, where $\mu_0 > 0$ is the infimum of the spectrum of the Laplacian acting on L^2 -functions on M. Then any p-harmonic map $\phi: M \to N$ of finite p-energy is constant. Also, we study Liouville type theorem for p-harmonic morphism.

1. Introduction

Let (M, g) and (N, h) be smooth Riemannian manifolds and let $\phi : M \to N$ be a smooth map. For a compact domain $\Omega \subset M$, the *p*-energy $E_p(\phi; \Omega)$ of ϕ over Ω is defined by

$$(1.1) E_p(\phi;\Omega) = \frac{1}{p} \int_{\Omega} |d\phi|^p \mu_M,$$

where the differential $d\phi$ is a section of the bundle $T^*M \otimes \phi^{-1}TN \to M$ and $\phi^{-1}TN$ denotes the pull-back bundle via the map ϕ . The bundle $T^*M \otimes \phi^{-1}TN \to M$ carries the connection ∇ induced by the Levi-Civita connections on M and N. A map $\phi: M \to N$ is called p-harmonic if the p-tension field $\tau_p(\phi) = 0$, which is defined by

(1.2)
$$\tau_p(\phi) = \operatorname{tr}_q \nabla(|d\phi|^{p-2} d\phi),$$

where tr_g denote the trace with respect to the metric g. A p-harmonic map ϕ is a critical point of the energy functional defined by (1.1) on any compact domain $\Omega \subset M$. When p=2, p-harmonic maps are well-known to be harmonic maps. Several studies are given for harmonic maps (see [5], [6], [7], [8], [10], [11], [12], [13], [14], [16]). Let μ_0 be the infimum of the spectrum of the Laplacian Δ_M acting on L^2 -functions on M and Ric^M be the Ricci tensor of M.

Recently, D. J. Moon, H. Liu and S. D. Jung [9] proved the following theorem for p-harmonic maps.

Received June 24, 2013.

 $^{2010\} Mathematics\ Subject\ Classification.\ 53C43,\ 58E20.$

Key words and phrases. p-harmonic map, p-harmonic morphism, Liouville type theorem.

Theorem 1.1 ([9]). Let M be a complete Riemannian manifold such that $Ric^M \ge -\frac{4(p-1)}{p^2}\mu_0$ for all x and $Ric^M > -\frac{4(p-1)}{p^2}\mu_0$ at some point x_0 . Let N be a complete Riemannian manifold of non-positive sectional curvature. Then any p-harmonic map $\phi: M \to N$ of $E_p(\phi) < \infty$ is constant.

In Theorem 1.1, the condition $Ric^M > -\frac{4(p-1)}{p^2}\mu_0$ at some point x_0 is essential. In this paper, we prove Theorem 1.1 when the volumn is infinite, i.e., $Vol(M) = \infty$ instead of $Ric^M > -\frac{4(p-1)}{p^2}\mu_0$ at some point. Then we have the following theorem.

Theorem A Let M be a complete Riemannian manifold such that $Ric^M \ge -\frac{4(p-1)}{p^2}\mu_0$ for all x and Vol(M) is infinite. Let N be a complete Riemannian manifold of non-positive sectional curvature. Then any p-harmonic map $\phi: M \to N$ of $E_p(\phi) < \infty$ is constant.

A map $\phi:(M,g)\to (N,h)$ is a p-harmonic morphism if it pulls back (local) p-harmonic functions on N to (local) p-harmonic functions on M, i.e., for any function $f:V\subset N\to\mathbb{R}$ if $\tau_p(f)=0$, then $\tau_p(f\circ\phi)=0$. It is well-known [4, 8] that a non-constant map is a p-harmonic morphism if and only if it is a horizontally weakly conformal p-harmonic map. A horizontally weakly conformal map $\phi:(M,g)\to (N,h)$ generalizes the notion of a Riemannian submersion in that for any $x\in M$ at which $d\phi_x\neq 0$, the restriction $d\phi_x|_{H_x}:H_x\to T_{\phi(x)}N$ is conformal and surjective, where the horizontal space H_x is the orthogonal complement of $V_x=\mathrm{Ker}(d\phi_x)$ in T_xM . Trivially, if we put $C_\phi=\{x\in M\mid d\phi_x=0\}$, then there exists a function $\lambda:M\backslash C_\phi\to\mathbb{R}^+$ such that

(1.3)
$$h(d\phi(X), d\phi(Y)) = \lambda^2 g(X, Y) \quad \forall X, Y \in H.$$

Note that at the point $x \in C_{\phi}$ we can let $\lambda(x) = 0$ and obtain a continuous function $\lambda : M \to \mathbb{R}^+ \cup \{0\}$ which is called the *dilation* of a horizontally weakly conformal map ϕ . A non-constant horizontally weakly conformal map ϕ is said to be *horizontally homothetic* if the gradient of $\lambda^2(x)$ is vertical, meaning that $X(\lambda^2) = 0$ for any horizontal vector field X on M. In 2008, D. J. Moon, H. Liu and S. D. Jung [9] also proved the following.

Theorem 1.2 ([9]). Let M be a complete Riemannian manifold such that $Ric^M \geq -\frac{4(p-1)}{p^2}\mu_0$ for all x and $Ric^M > -\frac{4(p-1)}{p^2}\mu_0$ at some point x_0 . Let N be a complete Riemannian manifold of non-positive scalar curvature. Then any p-harmonic morphism $\phi: M \to N$ of $E_p(\phi) < \infty$ is constant.

In this paper, we prove Theorem 1.2 under the condition $\operatorname{Vol}(M) = \infty$ instead of $Ric^M > -\frac{4(p-1)}{p^2}\mu_0$ at some point.

Theorem B Let M be a complete Riemannian manifold such that $Ric^M \ge -\frac{4(p-1)}{r^2}\mu_0$ for all x and the volume Vol(M) is infinite. Let N be a complete

Riemannian manifold of non-positive scalar curvature. Then any p-harmonic morphism $\phi: M \to N$ of $E_p(\phi) < \infty$ is constant.

2. The Weitzenböck formula

First, we recall the Weitzenböck formula. Let (M^m,g) and (N^n,h) be Riemannian manifolds with $\dim M=m\geq n=\dim N$. Let $\phi:M\to N$ be a smooth map and $E=\phi^{-1}TN$ be the induced bundle over M. Then E has a naturally induced metric connection $\nabla\equiv\phi^{-1}\nabla^N$ and $d\phi$ is a cross section of $\mathrm{Hom}(TM,E)$ over M. Since $\mathrm{Hom}(TM,E)$ is canonically identified with $T^*M\otimes E, d\phi$ is regarded as an E-valued 1-form. Let $d_\nabla:A^r(E)\to A^{r+1}(E)$ be an anti-derivation and δ_∇ the formal adjoint of d_∇ , where $A^r(E)$ is the space of E-valued r-forms with an inner product $\langle\cdot,\cdot\rangle$ on M. Let $\{e_i\}_{i=1,\dots,m}$ be local orthonormal frame field on M and let $\{\omega^i\}$ be its dual coframe field. Locally, the operators d_∇ and δ_∇ are expressed by

$$d_{\nabla} = \sum_{j=1}^{m} \omega^{j} \wedge \nabla_{e_{j}}$$
 and $\delta_{\nabla} = -\sum_{j=1}^{m} i(e_{j}) \nabla_{e_{j}}$,

respectively, where i(X) is the interior product. The Laplacian Δ on $A^*(E)$ is defined by

(2.1)
$$\Delta = d_{\nabla} \delta_{\nabla} + \delta_{\nabla} d_{\nabla}.$$

Then we have the following Weitzenböck formula.

Lemma 2.1 (cf. [6], [7]). Let $\phi:(M^m,g)\to (N^n,h)$ be an arbitrary smooth map. Then the Weitzenböck formula is given by

$$(2.2) -\frac{1}{2}\Delta^{M}|d\phi|^{2p-2} = |\nabla(|d\phi|^{p-2}d\phi)|^{2} - \langle |d\phi|^{p-2}d\phi, \Delta(|d\phi|^{p-2}d\phi)\rangle + F(\phi),$$

where

(2.3)
$$F(\phi) = |d\phi|^{2p-4} \sum_{k=1}^{m} h(d\phi(Ric^{M}(e_{k})), d\phi(e_{k}))$$
$$-|d\phi|^{2p-4} \sum_{k,j=1}^{m} h(R^{N}(d\phi(e_{j}), d\phi(e_{k})) d\phi(e_{k}), d\phi(e_{j})).$$

Let $\phi:(M,g)\to(N,h)$ be a p-harmonic map. Then, from (1.2)

(2.4)
$$\delta_{\nabla}(|d\phi|^{p-2}d\phi) = 0.$$

Then we have the following lemma.

Lemma 2.2 ([9]). Let M be a complete Riemannian manifold such that for some constant $C \ge 0$, $Ric^M \ge -C$ at all $x \in M$ and let N be a Riemannian

manifold of non-positive sectional curvature. If $\phi:(M,g)\to(N,h)$ is a pharmonic map, then

$$|d\phi|\Delta^M|d\phi|^{p-1} - G_p(\phi) \le -|d\phi|^{p-2} \sum_{i=1}^m h(d\phi(Ric^M(e_i)), d\phi(e_i))$$

$$\le C|d\phi|^p,$$

where $G_p(\phi) = \langle d\phi, \delta_{\nabla} d_{\nabla} (|d\phi|^{p-2} d\phi) \rangle$. If ϕ is harmonic, then $G_2(\phi) = 0$.

Let x_0 be a point of M and fix it. We choose a Lipschitz continuous function ω_{ℓ} on M such that $0 \leq \omega_{\ell}(y) \leq 1$ for any $y \in M$, $\omega_{\ell} \equiv 1$ on $B(x_0, \ell)$, supp $\omega_{\ell} \subset B(x_0, 2\ell)$, $\lim_{\ell \to \infty} \omega_{\ell} = 1$ and $|d\omega_{\ell}| \leq \tilde{C}/\ell$ for some constant $\tilde{C} > 0$, where $\ell \in \mathbb{R}_+$ and $B(x_0, \ell)$ is the Riemannian open ball with radius ℓ .

Lemma 2.3. Let M and N be complete Riemannian manifolds. For any smooth map $\phi:(M,g)\to(N,h)$, we have

$$\begin{split} |\int_{B(2l)} \omega_{l}^{2} G_{p}(\phi)| &\leq A_{1} \int_{M} \omega_{\ell} |d\omega_{\ell}| |d\phi|^{\frac{p}{2}} |d| d\phi|^{\frac{p}{2}} |\\ &\leq A_{1} \Big(\int_{M} |d\omega_{\ell}|^{2} |d\phi|^{p} \Big)^{\frac{1}{2}} \Big(\int_{M} \omega_{\ell}^{2} |d| d\phi|^{\frac{p}{2}} |^{2} \Big)^{\frac{1}{2}}, \end{split}$$

where $A_1 = \frac{4(p-2)}{p}b^2$ for some constant b. In particular, if $\phi: M \to N$ satisfies $E_p(\phi) < \infty$ and $\int_M |d|d\phi|^{\frac{p}{2}}|^2 < \infty$, then

$$\int_{M} \omega_l^2 G_p(\phi) \to 0 \ (l \to \infty).$$

Proof. It is well-known [10] that for a function f on M and for some constant b > 0,

$$(2.5) |d_{\nabla}(fd\phi)| \le b|df||d\phi|.$$

By the Schwartz's inequality with (2.5), we have

$$\begin{split} |\int_{B(2l)} \langle \omega_\ell^2 d\phi, \delta_\nabla d_\nabla (|d\phi|^{p-2} d\phi) \rangle | &= |\int_{B(2l)} \langle d_\nabla (\omega_\ell^2 d\phi), d_\nabla (|d\phi|^{p-2} d\phi) \rangle | \\ &\leq \int_{B(2l)} |d_\nabla (\omega_\ell^2 d\phi)| |d_\nabla (|d\phi|^{p-2} d\phi) | \\ &\leq 2b^2 \int_{B(2l)} |\omega_\ell d\omega_\ell| |d| d\phi |^{p-2} ||d\phi|^2 \\ &\leq A_1 \int_{B(2l)} \omega_\ell |d\omega_\ell| |d\phi|^{\frac{p}{2}} |d| d\phi |^{\frac{p}{2}} |, \end{split}$$

where $A_1 = \frac{4(p-2)}{p}b^2$. By the Hölder inequality, we have

$$\int_{B(2l)} \omega_{\ell} |d\omega_{\ell}| |d\phi|^{\frac{p}{2}} |d|d\phi|^{\frac{p}{2}} | \leq \left(\int_{B(2l)} |d\omega_{\ell}|^2 |d\phi|^p \right)^{\frac{1}{2}} \left(\int_{B(2l)} \omega_{\ell}^2 |d|d\phi|^{\frac{p}{2}} |^2 \right)^{\frac{1}{2}},$$

which completes the proof.

3. Proof of Theorem A

Let M be a complete Riemannian manifold such that $Ric^M \geq -C$, where $C = \frac{4(p-1)}{p^2}\mu_0$. From Lemma 2.2, if we multiply by ω_ℓ^2 and integrate by parts, we get

$$\int_{M} \langle \omega_{\ell}^{2} | d\phi |, \Delta^{M} | d\phi |^{p-1} \rangle - \int_{M} \omega_{\ell}^{2} G_{p}(\phi)$$

$$\leq - \sum_{i=1}^{m} \int_{M} \omega_{\ell}^{2} | d\phi |^{p-2} h(d\phi(Ric^{M}(e_{i})), d\phi(e_{i}))$$

$$\leq C \int_{M} \omega_{\ell}^{2} | d\phi |^{p}.$$

On the other hand, by using the Schwartz's inequality $|\langle V,W\rangle| \leq |V||W|,$ we have

$$\int_{M} \langle \omega_{\ell}^{2} | d\phi |, \Delta^{M} | d\phi |^{p-1} \rangle$$

$$= A_{2} \int_{M} \langle |d\phi|^{\frac{p}{2}} d\omega_{\ell}, \omega_{\ell} d|d\phi|^{\frac{p}{2}} \rangle + \frac{A_{2}}{p} \int_{M} \omega_{\ell}^{2} |d| d\phi |^{\frac{p}{2}}|^{2}$$

$$\geq -A_{2} \int_{M} \omega_{\ell} |d\phi|^{\frac{p}{2}} ||d\omega_{\ell}|| d|d\phi|^{\frac{p}{2}}| + \frac{A_{2}}{p} \int_{M} \omega_{\ell}^{2} |d| d\phi |^{\frac{p}{2}}|^{2},$$

$$(3.2)$$

where $A_2 = \frac{4(p-1)}{p}$. From Lemma 2.3 and (3.2), we have

$$\begin{split} & \int_{M} \langle \omega_{l}^{2} | d\phi |, \Delta^{M} | d\phi |^{p-1} \rangle - \int_{M} \omega_{l}^{2} G_{p}(\phi) \\ & \geq - (A_{1} + A_{2}) \int_{M} \omega_{l} | d\omega_{l} | | d\phi |^{\frac{p}{2}} | d| d\phi |^{\frac{p}{2}} | + \frac{A_{2}}{p} \int_{M} |\omega_{l} d| d\phi |^{\frac{p}{2}} |^{2} \\ & \geq - \frac{1}{2\epsilon} (A_{1} + A_{2}) \int_{M} |d\omega_{l}|^{2} |d\phi|^{p} + \left(\frac{A_{2}}{p} - \frac{\epsilon}{2} (A_{1} + A_{2}) \right) \int_{M} \omega_{l}^{2} |d| d\phi |^{\frac{p}{2}} |^{2}, \end{split}$$

where $0 < \epsilon < \frac{2A_2}{p(A_1 + A_2)}$. From (3.1), if we let $l \to \infty$, then

$$\left(\frac{A_2}{p} - \frac{\epsilon}{2}(A_1 + A_2)\right) \int_M |d|d\phi|^{\frac{p}{2}}|^2 \le C \int_M |d\phi|^p.$$

And if we let $\epsilon \to 0$, then

(3.3)
$$\frac{A_2}{p} \int_M |d| d\phi|^{\frac{p}{2}}|^2 \le C \int_M |d\phi|^p.$$

Hence $d|d\phi|^{\frac{p}{2}} \in L^2$. Hence, from Lemma 2.3, if we let $\ell \to \infty$, then

(3.4)
$$\int_{M} \omega_{\ell} |d\omega_{\ell}| |d\phi|^{\frac{p}{2}} |d|d\phi|^{\frac{p}{2}} | \to 0 \quad \text{and} \quad \int_{M} \omega_{l}^{2} G_{p}(\phi) \to 0.$$

By the Rayleigh quotient theorem, i.e., $\frac{\int_M \langle df, df \rangle}{\int_M f^2} \ge \mu_0$ for any smooth function f such that $supp(f) \subset \Omega$, a compact domain, and the Hölder inequality, if we put $f = \omega_\ell |d\phi|^{\frac{p}{2}}$, then

(3.5)
$$\mu_0 \int_M |d\phi|^p \le \int_M |d|d\phi|^{\frac{p}{2}}|^2.$$

From (3.3) and (3.5), we have

(3.6)
$$\mu_0 \int_M |d\phi|^p \le \int_M |d|d\phi|^{\frac{p}{2}}|^2 \le \mu_0 \int_M |d\phi|^p.$$

Since μ_0 is the infimum of the spectrum, from (3.6),

$$\Delta_M |d\phi|^{\frac{p}{2}} = \mu_0 |d\phi|^{\frac{p}{2}},$$

which implies that $|d\phi|$ is constant by the maximum principle [15]. Since $\operatorname{Vol}(M)$ is infinite, $E_p(\phi) < \infty$ implies that $d\phi = 0$, i.e., ϕ is constant.

4. Proof of Theorem B

Let $\phi:(M^m,g)\to (N^n,h)$ $(m\geq n)$ be a p-harmonic morphism with dilation λ . Let $\{e_i\}_{i=1,\dots,m}$ be a local orthonormal frame field on M such that $\{e_i\}_{i=1,\dots,n}\in H_x$ and $\{e_i\}_{i=n+1,\dots,m}\in V_x$. Then it is trivial from (1.3) that

$$(4.1) |d\phi|^2 = n\lambda^2.$$

Moreover, it is easy to see that

(4.2)
$$\sum_{i=1}^{m} h(d\phi(Ric^{M}(e_i)), d\phi(e_i)) = \lambda^2 \operatorname{tr}_g(Ric^{M}|_{H})$$

and

(4.3)
$$\sum_{i,j=1}^{m} h(R^{N}(d\phi(e_i), d\phi(e_j)) d\phi(e_j), d\phi(e_i)) = \lambda^{4} \operatorname{scal}_{N} \circ \phi,$$

where $Ric^M|_H$ is the Ricci tensor of M on the horizontal distribution H and $scal_N$ is the scalar curvature of N. From (4.1), (4.2) and (4.3), we have the following lemma.

Lemma 4.1 ([9]). Let $\phi:(M,g)\to(N,h)$ be a p-harmonic morphism with dilation λ . Then

$$(4.4) -\frac{1}{2}n\Delta^{M}\lambda^{2p-2} = |\nabla(\lambda^{p-2}d\phi)|^{2} - \langle d\phi, \delta_{\nabla}d_{\nabla}(\lambda^{p-2}d\phi)\rangle + \lambda^{2p}\operatorname{tr}_{q}(Ric^{M}|_{H}) - \lambda^{2p}\operatorname{scal}_{N} \circ \phi.$$

Lemma 4.2 ([9]). Let M be a complete Riemannian manifold such that $Ric^M \ge -C$ at all $x \in M$ and let N be a Riemannian manifold of non-positive scalar curvature. If $\phi: (M,g) \to (N,h)$ is a p-harmonic morphism, then

$$(4.5) n\lambda \Delta^M \lambda^{p-1} - \langle d\phi, \delta_{\nabla} d_{\nabla} (\lambda^{p-2} d\phi) \rangle \le -\lambda^p \operatorname{tr}_g(Ric^M|_H) \le nC\lambda^p.$$

Proof of Theorem B. Let us put $C = \frac{4(p-1)}{p^2}\mu_0$ in Lemma 4.2. By the same process as in the proof of Theorem A, we have

$$(4.6) \Delta_M \lambda^{\frac{p}{2}} = \mu_0 \lambda^{\frac{p}{2}}.$$

By the maximum principle [15], λ is constant. Since Vol(M) is infinite, $\lambda=0$, i.e., ϕ is constant.

Acknowledgements. This research was supported by the 2013 scientific promotion program funded by Jeju National University.

References

- [1] P. Bérard, A note on Bochner type theorems for complete manifolds, Manuscripta Math. **69** (1990), no. 3, 261–266.
- [2] G. Choi and G. Yun, A theorem of Liouville type for harmonic morphisms, Geom. Dedicata 84 (2001), no. 1-3, 179–182.
- [3] _____, A theorem of Liouville type for p-harmonic morphisms, Geom. Dedicata 101 (2003), 55–59.
- [4] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 2, 107–144.
- [5] S. D. Jung, Harmonic maps of complete Riemannian manifolds, Nihonkai Math. J. 8 (1997), no. 2, 147–154.
- [6] S. D. Jung, D. J. Moon, and H. Liu, A Liouville type theorem for harmonic morphisms, J. Korean Math. Soc. 44 (2007), no. 4, 941–947.
- [7] A. Kasue and T. Washio, Growth of equivariant harmonic maps and harmonic morphisms, Osaka J. Math. 27 (1990), no. 4, 899–928.
- [8] E. Loubeau, On p-harmonic morphisms, Differential Geom. Appl. 12 (2000), no. 3, 219–229.
- [9] D. J. Moon, H. Liu, and S. D. Jung, Liouville type theorems for p-harmonic maps, J. Math. Anal. Appl. 342 (2008), no. 1, 354–360.
- [10] N. Nakauchi, A Liouville type theorem for p-harmonic maps, Osaka J. Math. 35 (1998), no. 2, 303–312.
- [11] N. Nakauchi and S. Takakuwa, A remark on p-harmonic maps, Nonlinear Anal. 25 (1995), no. 2, 169–185.
- [12] R. M. Schoen and S. T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Comment. Math. Helv. 51 (1976), no. 3, 333–341.
- [13] H. Takeuchi, Stability and Liouville theorems of p-harmonic maps, Japan. J. Math. (N.S.) 17 (1991), no. 2, 317–332.
- [14] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228.
- [15] ______, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659–670.
- [16] H. H. Wu, The Bochner technique in differential geometry, Math. Rep. 3 (1988), no. 2, 289–538.

DEPARTMENT OF MATHEMATICS

JEJU NATIONAL UNIVERSITY

ЈЕЈИ 690-756, KOREA

E-mail address: sdjung@jejunu.ac.kr