• Title/Summary/Keyword: Linearization Controller

Search Result 281, Processing Time 0.03 seconds

Stability Proof of NFL-ROO/SMC : Part 2 (NFL-ROO/SMC의 안정도 증명 : Part 2)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.976-978
    • /
    • 1998
  • This paper presents the stability proof of a nonlinear feedback linearization-reduced order observer/sliding mode controller (NFL-ROO/SMC). The closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF

Stability Proof of NFL-O/SMMFC : Part 3 (NFL-O/SMMFC의 안정도 증명 : Part 3)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.979-981
    • /
    • 1998
  • This paper presents a stability proof for the nonlinear feedback linearization-observer/sliding mode model following controller (NFL-O/SMMFC). The separation principle is derived, and the closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF

Stability Proof of NFL-ROO-based SMC : Part 6 (NFL-ROO에 기준한 SMC의 안정도 증명 : Part 6)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.988-990
    • /
    • 1998
  • This paper presents the stability proof of a nonlinear feedback linearization-reduced order observer-based sliding mode controller (NFL-ROO-based SMC). The closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF

Stability Proof of NFL-O-based SMMFC : Part 7 (NFL-O에 기준한 SMMFC의 안정도 증명 : Part 7)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.991-993
    • /
    • 1998
  • This paper presents a stability proof for the nonlinear feedback linearization-observer-based sliding mode model following controller (NFL-O-based SMMFC). The closed-loop stability is proved by a Lyapunov function candidate using an addition form of the sliding surface vector and the estimation error.

  • PDF

Dynamic Characteristic Analysis and LMI-based H_ Controller Design for a Line of Sight Stabilization System

  • Lee, Won-Gu;Kim, In-Soo;Keh, Joong-Eup;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1187-1200
    • /
    • 2002
  • This paper is concerned with the design or an LMI (Linear Matrix Inequality) -based H$\infty$ controller for a line of sight (LOS) stabilization system and with its robustness performance. The linearization of the system is necessary to analyze various nonlinear characteristics, but the linearization entails modeling uncertainties which reduce its performance. In addition, the stability of the LOS can be adversely affected by angular velocity disturbances while the vehicle is moving. As the vehicle accelerates, all the factors that are Ignored and simplified for the linearization tend to Inhibit the performance of the system. The robustness in the face of these uncertainties needs to be assured. This paper employs H$\infty$ control theory to address these problems and the LMI method to provide a suitable controller with minimal constraints for the system. Even though the system matrix does not have a full rank, the proposed method makes it possible to design a H$\infty$ controller and to deal with R and S matrices for reducing the system order. It can be also shown that the proposed robust controller has a better disturbance attenuation and tracking performance. The LMI method is also used to enhance the applicability of the proposed reduced-order H$\infty$ controller for the system given. The LMI-based H$\infty$ controller has superior disturbance attenuation and reference input tracking performance, compared with that of the conventional controller under real disturbances.

Moving Mass Actuated Reentry Vehicle Control Based on Trajectory Linearization

  • Su, Xiao-Long;Yu, Jian-Qiao;Wang, Ya-Fei;Wang, Lin-lin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.247-255
    • /
    • 2013
  • The flight control of re-entry vehicles poses a challenge to conventional gain-scheduled flight controllers due to the widely spread aerodynamic coefficients. In addition, a wide range of uncertainties in disturbances must be accommodated by the control system. This paper presents the design of a roll channel controller for a non-axisymmetric reentry vehicle model using the trajectory linearization control (TLC) method. The dynamic equations of a moving mass system and roll control model are established using the Lagrange method. Nonlinear tracking and decoupling control by trajectory linearization can be viewed as the ideal gain-scheduling controller designed at every point along the flight trajectory. It provides robust stability and performance at all stages of the flight without adjusting controller gains. It is this "plug-and-play" feature that is highly preferred for developing, testing and routine operating of the re-entry vehicles. Although the controller is designed only for nominal aerodynamic coefficients, excellent performance is verified by simulation for wind disturbances and variations from -30% to +30% of the aerodynamic coefficients.

Multi-UAV Formation Based on Feedback Linearization Technique Using Range-Only Measurement (거리 정보를 이용한 되먹음 선형화 기법 무인기 편대 비행제어)

  • Kim, Sung-Hwan;Ryoo, Chang-Kyung;Park, Choon-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.23-30
    • /
    • 2009
  • This paper addresses how to make a formation of multiple unmanned aerial vehicles (UAVs) using only the relative range information. Since the relative range can easily be measured by an on-board range sensor like the laser range finder, the proposed method does not require any expensive and heavy wireless communication system to share the navigation information of each vehicle. Based on the two-dimensional (2-D) nonlinear equations of motion, we propose a nonlinear formation controller using the typical input-output feedback linearization method. The performance of the proposed formation controller is verified by various numerical simulations.

Design of a Robust Position Tracking Controller for Flexible Joint Manipulator Using Motor Angle (모터 각도를 이용한 유연 관절 머니퓰레이터의 강인한 위치 추종 제어기 설계)

  • Lee, Sang-Myung;Kim, In-Hyuk;Son, Young Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1245-1247
    • /
    • 2014
  • This paper presents a robust position tracking controller for motor-driven flexible joint manipulators using only the motor angle measurement. The control problem is not easy because the link position is hard to estimate in the presence of parameter uncertainties. The proposed controller consists of a feedback linearization controller (FLC) and two proportional-integral observers (PIOs) that estimate both system states including the link position and an equivalent disturbance for compensating the parameter uncertainties. Comparative computer simulations are conducted to demonstrate the effectiveness of the proposed control algorithm.

NFL-$H_{\infty}$/SMC Design for Nonlinear PSS : Part B (비선형 PSS을 위한 NFL-$H_{\infty}$/SMC 의 설계 : Part B)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.970-972
    • /
    • 1998
  • In this paper, the standard Dole, Glover, Khargoneker, and Francis (abbr. : DGKF 1989) $H_{\infty}$ controller $(H_{\infty}C)$ is extended to the nonlinear feedback linearization-$H_{\infty}$ /sliding mode controller (NFL-$H_{\infty}$/SMC) to solve the problem associated with the full state feedback for the unmeasurable state variables in the conventional SMC, to obtain the smooth control as the linearized controller for a linear system (or to cancel the nonlinearity for the nonlinear system), and to improve the time-domain performance under worst case.

  • PDF

On Feedback Linearization of Nonlinear Time-Delay Systems

  • Shin, Hee-Sub;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1906-1908
    • /
    • 2004
  • We propose a result on the stabilization of nonlinear time-delay systems via the feedback linearization method. Using the predictor based control and the parametric coordinate transformation, we introduce a stabilizing controller to compensate time delay. Specifically, we present the delay-dependent stability analysis to makes the considered system stable. Also, an illustrative example is provided

  • PDF