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[Abstract] This paper presents a stability proof
for the nonlinear feedback linearization-
observer/sliding mode model following controller
(NFL-O/SMMFC). The separation principle is
derived, and the closed-loop stability is proved by
a Lyapunov function candidate using an addition
form of the sliding surface vector and the
estimation error.
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1. Introduction

In this paper, to tackle the problem associated
with the full state feedback [1-17], the nonlinear
feedback linearization-observer/sliding mode
model following controller (NFL-O/SMMFC) for
unmeasurable plant state variables is developed.
By the separation principle, the proposed NFL-
O/SMMEFC is obtained by combining the observer
with the nonlinear feedback linearization-sliding
mode model following controller (NFL-SMMFC).
The closed-loop stability is proved by a Lyapunov
function candidate using an addition form of the
sliding surface vector and the estimation error.

2. NFL-O/SMMFC design

The NFL-based reference model state equation is
(19]

z,(t) = {x.()) 1)
z,(f)= 4.2,(1)+ B, (1) )

where x,eR' is the state vector for model,
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z, e " is the transformed state vector for model,
u, e R* is the control input for model, 4, is the
nxn System matrix for model, and B, is the
n x p control vector for model.

The control input for a reference model is

u{ty=-Kz,(f) (3)
K,=R!BP, (4)
PA +AP ~-PBR'BIP+Q =0 (5)

where K, isa pxn optimal feedback gain for
model, and P, is the algebraic matrix Riccati

equation.

The closed loop feedback system is
z,(ty={4,-B.K,)z.(f) (6)
A, =4 -BK, (N

The NFL-based state equation for the reference
model including CLF is reformed as

z,()= 4,2.() (8)
The control input for a controlled plant is

1, (1) =-K,z2,(1) 9
K, =R'BP, (10)
PA+AP-PBR'BP+0 =0 an

The NFL-based state equation for the controlled
plant and the output equation are formed as

()= T(x,0) (12)
2,(0)= 4,2,()+ Bu (1) (13)
»()=Cz() (14)

where x, eR" is the state vector for plant, z, eR”
is the transformed state vector for plant, u, eRr’
is the control input for plant, y eR" is the
available output measured for plant, 4, is the
nxn system matrix for plant, B is the nxp
control matrix for plant, and ¢, is the pxn
output matrix for plant.
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The NFL-based observer equation is expressed as
(18]

2,(0)= 42,0+ B, () + L,(5,() - C.5,))

=(4, - LC,)a,(r)+ B (1) + L,y (r) (15)
L, =PCR (16)
AP, +PA -PC'R'CP+0Q, =0 1

where z eRr" is the estimated state for plant
based on NFL, L, is the nx p output injection
matrix for plant, P is the symmetric positive

definite solution, and, ¢, and R are positive

definite matrices.
The NFL-based state equation for the controlled
plant including CLF is expressed as

&(0=(4, ~B,K,)z,(1) (18)
A, =4, -BK (19)
The NFL-based state equation for the controlled
plant including CLF is reformed as

£(1)= 4,7,() + B,u, (1) (20
The error and the differential error equations are

e(t)=z.()-2,() 2n
ét)=2,()~2,(t) (22)

From equations (8), (20) and (22), we get

) =2,(0)-2,(t) = 4uz.(t)- A,2,(1) - B,u, (1) (23)
z(t)= () +2,() 24
Let us write the motion equation with respect to
the error vector

)= Anelt) +[ A - 4, ), (0) - B, (1) (25)

The sliding surface vector and the differential
sliding surface vector are expressed as

o-(e(t)) =GLe(r)

=Gz, (1) - Giz,(1) =0 (26)
ole(t)) = GLe(t)

= Gl A e()+ GL[ A, - 4, ), (1)

~GLB,u, ()= 0 @7
where G is the sliding surface gain [1-4,10].
The Lyapunov’s function candidate is chosen by
14 (e(t)) =0’ (e(t)) /2 (28)
The time derivative of equation (28) is given by
/(o) = ofel))ot)

= G_;e(t)G;[AKme(t) +[Aen — 4, )7, (1) - Bttguue (t)]

<0 (29)
The equation (29) is represented as the control
input with switching function

Winre (1) 2 (G4B,)" G| Auelt) + [ 4. - 4, ], ()]

Jor G;e(t) >0 (30)
Uoure(1) S (C5B,) " GL[ Anelt) +[ 4, - 4, ]2, (1)
Sor G;e(l) <0 31)

The control input vector with sign function is
simpliﬁed as follows:

w1t [E_w,me )+ Pl z, (t)]s:gn(o’(e ) (32)

subjectto  sign{o{e(r))) =1 for ofe(r))>0
signofe(r))) =0 for ofe(1))=0
sign(o-(e(t))) =-1 for o(e(t)) <0

where Egw. :=(GLB,) Gi4,, (33)
P :=(GLB,) GL(4 - 4,) (34)

where E£x is an sliding mode-model following
control-equal error feedback gain, and P is a
sliding mode-model following control-equal plant
feedback gain.

Finally, the estimated control input vector with

sign function is simplified as follows:

e (1) = | Esnce(t) + P, (1) sign{ o(e(1) (33)

Theorem 1: Consider the state equations of the
reference model and of the controlled plant based
on NFL for the regulation problem and the
observer state equation based on NFL
z, =4,z and y =Cz,
zp =4.z2,+B uo,Mm and y,=Cz,
-Cz)

2 =4z +Bus, .+ LP( A

Consider GLB,(GLB,) =1,
and z,=e,+,. Suppose that (4,.C,) is detectable

y,=Cgz

Z,, e=z,—7,
and (4,-L,C,) is Hurwitz. The estimated sliding

mode model following control law with sign
function based on NFL is guaranteed an
asymptotically stable for the system (13)

e = | Ediece + Piac?, ]sign(a(e))
Egs. =(GLB,)"GL4

P =(GLB,) GL( 4y A,,,)

subjectto  sign{ofe))=1  for ofe)>0
sign(cr(e)) =0 for cr(e) =0
sign(a(e)) =-1 for o'(e) <0

Proof. Let us define the error equation and the
differential error equation
€ b = ¥4 ', 2 »

eP=zﬂ-zP
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=4,z,+Bu ;f;w,.c Az, -But, - LCrz,+LCz,

2, — 42, ~LCz +LCz =( h—,’y)ep

Lyapunov’s functxon candidate using the addition
form of the plant siding surface gain o, and the
plant error ¢, is chosen by

V= »21-0'7 (e)ole)+ -zl-e;ep

The derivative of a Lyapunov’s function candidate
is obtained by

V=0"(e)ole)+elé,
= 0" (Y Gidue + G4 (4 - 4, ),
+e(4, - L,C,)e,
=g (e){c;; A, +C(4, - 4,)z,
~(GLB Extiice + GLB, Pit 2, Jsign(o(e)))
+e;(4, - L,C,)e,

-GLB uo,wum)

Let us define £z :=(GL8,)"GL4,., and

Km 3
Paet = (GLB,) Gi( 4. - 4,)
Therefore,

V= a’(e)(G;Ame +GL (4, - 4,)2

~G3B,((GLB,) ' GL A, Je signo(e))

~GLB,[(64B,) G4 4,. - 4,)):,sign{ofe))
+e;(4, - L,C,)e,
Consider GJB,(GLB,) =1, y,=Cz,, e=z,-3,
and z,=¢, +3,
V= 0" () Gadue + (A - 4,)5, ~Giide sign(ofe))
~GL( A - 4, )5 s18n(0(e))) +e1(4, - L,C)e,
= 0" (Y Ghdne + GilAu - 4,)5, ~GLAre sign(o(e))
-Gl A, - 4, )5 sign(ofe))) +l(4, - L,C,)e,
= 0" ()G4(A,. - 4, ), -0 ()GL(4,. - 4, )2, sign{o(e))
+07(e)GiAne ~o7(e)GiAe sign(ole))
+e)(4, - L,C,)e,
= 0"()Gi{ A — 4,)(1- sign{o (), +o7()GT Aue
-0 ()G Ane sign(ale)) +el(4, - L,C,)e,
If (4,-LC,) is stable, the error is ¢ —0, and

e—>0 a r—0.
V:a’(e)G;(A.m-

subject to

A,@)(l - sign(a(e)))z",, <0

if o(e)>0, V=0

if ofe)=0, V=0

if ofe)<0, V=-2kGL(4,-4,);, <0
. k is positive constant.

i.e, V<0 and so the system is asymptotically
stable. This completes the proof of this theorem.O

3. Conclusion

A separation principle and a stability proof of a
nonlinear feedback linearization-observer/sliding

mode model following controller (NFL-
O/SMMFC) have been done.
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