• Title/Summary/Keyword: Linear output feedback

Search Result 365, Processing Time 0.037 seconds

Robust Controller Design for Non-square Linear Systems Using a Passivation Approach (수동화 기법에 의한 비정방 선형 시스템의 강인 제어기 설계)

  • 손영익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.907-915
    • /
    • 2002
  • We present a state-space approach to design a passivity-based dynamic output feedback control of a finite collection of non-square linear systems. We first determine a squaring gain matrix and an additional dynamics that is connected to the systems in a feedforward way, then a static passivating (i.e. rendering passive) control law is designed. Consequently, the actual feedback controller will be the static control law combined with the feedforward dynamics. A necessary and sufficient condition for the existence of the parallel feedfornward compensator (PFC) is given by the static output feedback fomulation, which enables to utilize linear matrix inequality (LMI). The effectiveness of the proposed method is illustrated by some examples including the systems which can be stabilized by the proprotional-derivative (PD) control law.

Static output feedback pole assignment of 2-input, 2-output, 4th order systems in Grassmann space

  • Kim, Su-Woon;Song, Seong-Ho;Kang, Min-Jae;Kim, Ho-Chan
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1353-1359
    • /
    • 2019
  • It is presented in this paper that the static output feedback (SOF) pole-assignment problem of some linear time-invariant systems can be completely resolved by parametrization in real Grassmann space. For the real Grassmannian parametrization, the so-called Plucker matrix is utilized as a linear matrix formula formulated from the SOF variable's coefficients of a characteristic polynomial constrained in Grassmann space. It is found that the exact SOF pole assignability is determined by the linear independency of columns of Plucker sub-matrix and by full-rank of that sub-matrix. It is also presented that previous diverse pole-assignment methods and various computation algorithms of the real SOF gains for 2-input, 2-output, 4th order systems are unified in a deterministic way within this real Grassmannian parametrization method.

The Output Feedback Control of Inverted Pendulum Systems for The Verification of Practical Use of Linear State Observers (선형 상태 관측기의 실용화 검증을 위한 도립진자 시스템의 출력 피드백 제어 실험)

  • Lee, Jong-Yeon;Cho, Kyu-Jung;Hyun, Chang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.192-197
    • /
    • 2011
  • In this paper, the output feedback control of inverted pendulum systems is experimented for the practicality verification of the linear state observer. For the experiment, a pendulum system, CEM-IP-01 of Cemware Inc. is used and Lagrange equation and Jacobian linearization are adopted for the dynamic analysis of the pendulum system. In addition, the output responses of the state feedback control and the output feedback control of the pendulum system are compared before the experiment by Matlab. Finally, we directly verify the practical use of the linear state observer by recognizing and solving some real problem to control the inverted pendulum system in practice.

Simultaneous stabilization via static ouput feedback using an LMI method (LMI를 이용한 정적출력궤환 동시안정화 제어기 설계)

  • Kim, Seog-Joo;Cheon, Jong-Min;Lee, Jong-Moo;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.523-525
    • /
    • 2005
  • This paper deals with a linear matrix inequality (LMI) approach to the design of a static output feedback controller that simultaneously stabilizes a finite collection of linear time-invariant plants. Simultaneous stabilization by static ouput feedback is represented in terms of LMIs with a rank condition. An iterative penalty method is proposed to solve the rank-constrained LMI problem. Numerical experiments show the effectiveness of the proposed algorithm.

  • PDF

Synthesis Problems of the Nonlinear Systems Via Dynamic Feedback (비선형 시스템의 Dynamic Feedback을 이용한 합성)

  • 이홍기;전홍태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.19-26
    • /
    • 1991
  • In this paper, we give a structure algorithm for the synthesis problems of the nonlinear system via dynamic feedback. Using our algorithm, sufficient conditions for the input-output synthesis problems are discussed. The problems we consider in this paper include dynamic input-output decoupling input-output linearization, and immersion into a linear system.

  • PDF

Adaptive Actuator Failure Compensation Designs for Linear Systems

  • Chen, Shuhao;Tao, Gang;Joshi, Suresh M.
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • This paper surveys some existing direct adaptive feedback control schemes for linear time-invariant systems with actuator failures characterized by the failure pattern that some inputs are stuck at some unknown fixed or varying values at unknown time instants, and applications of those schemes to aircraft flight control system models. Controller structures, plant-model matching conditions, and adaptive laws to update controller parameters are investigated for the following cases for continuous-time systems: state tracking using state feed-back, output tracking using state feedback, and output tracking using output feedback. In addition, a discrete-time output tracking design using output feedback is presented. Robustness of this design with respect to unmodeled dynamics and disturbances is addressed using a modified robust adaptive law.

Output Feedback Control for Feedforward Nonlinear Systems with Time Delay (시간지연을 갖는 피드포워드 비선형시스템의 출력 피드백 제어)

  • Lee, Sungryul
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.83-88
    • /
    • 2013
  • This paper presents the output feedback control design for feedforward nonlinear systems with input and output delay. The proposed output feedback controller is composed of a linear observer and a linear controller. It is shown that by using Lyapunov-Krasovskii theorem, the proposed controller ensures a global asymptotic stability for arbitrarily large delay. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Static Output Feedback Control for Continuous T-S Fuzzy Systems (연속시간 T-S 퍼지 시스템에 대한 정적 출력궤환 제어)

  • Jeung, Eun Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.560-564
    • /
    • 2015
  • This paper presents a design method of a static output feedback controller for continuous T-S fuzzy systems via parallel distributed compensation (PDC). The existence condition of a set of static output feedback gains is represented in terms of linear matrix inequalities (LMIs). The sufficient condition presented here does not need any transformation matrices and equality constraints and is less conservative than the previous results seen in [20].

Non-PDC Static Output Feedback Control for T-S Fuzzy Systems (T-S 퍼지 시스템에 대한 비병렬분산보상 정적 출력궤환 제어)

  • Jeung, Eun Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.496-501
    • /
    • 2016
  • This paper presents a design method of non-parallel distributed compensation (non-PDC) static output feedback controller for continuous- and discrete-time T-S fuzzy systems. The existence condition of static output feedback control law is represented in terms of linear matrix inequalities (LMIs). The proposed sufficient stabilizing condition does not need any transformation matrices and equality constraints and is less conservative than the previous result of [21].

Input-output linearization of nonlinear systems via dynamic feedback (비선형 시스템의 동적 궤한 입출력 선형화)

  • 김용민;이홍기;전홍태
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.40-57
    • /
    • 1998
  • The dynamic feedback is well-known to be much more powerful tool compensating the ononlinearity in nonlinear control system than the static one. In this paepr we consider the input-output linearization problem via a regular dynamic feedback which is to make linear the input-dependent part of the output sufficient conditions for the existence of such a regular dynamic feedback control law, after defining the structure algorithm for a dynamic feedback.

  • PDF