• Title/Summary/Keyword: Lemma

Search Result 277, Processing Time 0.025 seconds

SINGULARITY ESTIMATES FOR ELLIPTIC SYSTEMS OF m-LAPLACIANS

  • Li, Yayun;Liu, Bei
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1423-1433
    • /
    • 2018
  • This paper is concerned about several quasilinear elliptic systems with m-Laplacians. According to the Liouville theorems of those systems on ${\mathbb{R}}^n$, we obtain the singularity estimates of the positive $C^1$-weak solutions on bounded or unbounded domain (but it is not ${\mathbb{R}}^n$ and their decay rates on the exterior domain when ${\mid}x{\mid}{\rightarrow}{\infty}$. The doubling lemma which is developed by Polacik-Quittner-Souplet plays a key role in this paper. In addition, the corresponding results of several special examples are presented.

CRITICAL POINTS RESULT FOR THE C1,1 FUNCTIONAL AND THE RELATIVE CATEGORY THEORY

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.437-445
    • /
    • 2008
  • We show the existence of at least four nontrivial critical points of the $C^{1,1}$ functional f on the Hilbert space $H=X_0{\oplus}X_1{\oplus}X_2{\oplus}X_3{\oplus}X_4$, $X_i$, i = 0, 1, 2, 3 are finite dimensional, with f(0) = 0 when two sublevel subsets, torus with three holes and sphere, of f link, the functional f satisfies sup-inf variatinal linking inequality on the linking subspaces, the functional f satisfies $(P.S.)_c$ condition, and $f{\mid}_{X_0{\oplus}X_4}$ has no critical point with level c. We use the deformation lemma, the relative category theory and the critical point theory for the proof of main result.

  • PDF

A Study on Robust Stability of Uncertain Linear Systems with Time-delay (시간지연을 갖는 불확정성 선형 시스템의 강인 안정성에 관한 연구)

  • Lee, Hee-Song;Ma, Sam-Sun;Ryu, Jeong-Woong;Kim, Jin-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.615-621
    • /
    • 1999
  • In this paper, we consider the robust stability of uncertain linear systems with time-delay in the time domain. The considered uncertainties are both the unstructured uncertainty which is only Known its norm bound and the structured uncertainty which is known its structured. Based on Lyapunov stability theorem and{{{{ { H}_{$\infty$ } }}}} theory known as Strictly Bounded Real Lemma (SBRL), we present new conditions that guarantee the robust stability of system. Also, we extend this to multiple time-varying delays systems and large-scale systems, respectively. Finally, we show the usefulness of our results by numerical examples.

  • PDF

New Fault Location Algorithms by Direct Analysis of Three-Phase Circuit Using Matrix Inverse Lemma for Unbalanced Distribution Power Systems

  • Park, Myeon-Song;Lee, Seung-Jae
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.79-84
    • /
    • 2003
  • Unbalanced systems, such as distribution systems, have difficulties in fault locations due to single-phase laterals and loads. This paper proposes new fault locations developed by the direct three-phase circuit analysis algorithms using matrix inverse lemma for the line-to-ground fault case and the line-to-line fault case in unbalanced systems. The fault location for balanced systems has been studied using the current distribution factor, by a conventional symmetrical transformation, but that for unbalanced systems has not been investigated due to their high complexity. The proposed algorithms overcome the limit of the conventional algorithm using the conventional symmetrical transformation, which requires the balanced system and are applicable to any power system but are particularly useful for unbalanced distribution systems. Their effectiveness has been proven through many EMTP simulations.

VECTOR VARIATIONAL INEQUALITY PROBLEMS WITH GENERALIZED C(x)-L-PSEUDOMONOTONE SET-VALUED MAPPINGS

  • Lee, Byung-Soo;Kang, Mee-Kwang
    • The Pure and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.155-166
    • /
    • 2004
  • In this paper, we introduce new monotone concepts for set-valued mappings, called generalized C(x)-L-pseudomonotonicity and weakly C(x)-L-pseudomonotonicity. And we obtain generalized Minty-type lemma and the existence of solutions to vector variational inequality problems for weakly C(x)-L-pseudomonotone set-valued mappings, which generalizes and extends some results of Konnov & Yao [11], Yu & Yao [20], and others Chen & Yang [6], Lai & Yao [12], Lee, Kim, Lee & Cho [16] and Lin, Yang & Yao [18].

  • PDF

SOME RESULTS CONCERNED WITH HANKEL DETERMINANT FOR 𝓝 (𝜶) CLASS

  • Atli, Gizem;Ornek, Bulent Nafi
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.715-727
    • /
    • 2021
  • In this paper, we give some results an upper bound of Hankel determinant of H2(1) for the classes of 𝓝 (𝜶). We get a sharp upper bound for H2(1) = c3 - c22 for 𝓝 (𝜶) by adding z1, z2, …, zn zeros of f(z) which are different than zero. Moreover, in a class of analytic functions on the unit disc, assuming the existence of angular limit on the boundary point, the estimations below of the modulus of angular derivative have been obtained. Finally, the sharpness of the inequalities obtained in the presented theorems are proved.

SOME REMARKS FOR λ-SPIRALLIKE FUNCTION OF COMPLEX ORDER AT THE BOUNDARY OF THE UNIT DISC

  • Akyel, Tugba
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.743-757
    • /
    • 2021
  • We consider a different version of Schwarz Lemma for λ-spirallike function of complex order at the boundary of the unit disc D. We estimate the modulus of the angular derivative of the function $\frac{zf^{\prime}(z)}{f(z)}$ from below for λ-spirallike function f(z) of complex order at the boundary of the unit disc D by taking into account the zeros of the function f(z)-z which are different from zero. We also estimate the same function with the second derivatives of the function f at the points z = 0 and z = z0 ≠ 0. We show the sharpness of these estimates and present examples.

ESTIMATES FOR A CERTAIN SUBCLASS OF HOLOMORPHIC FUNCTIONS

  • Ornek, Bulent Nafi;Akyel, Tugba
    • The Pure and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.59-73
    • /
    • 2019
  • In this paper, a version of the boundary Schwarz Lemma for the holomorphic function belonging to $\mathcal{N}$(${\alpha}$) is investigated. For the function $f(z)=z+c_2z^2+C_3z^3+{\cdots}$ which is defined in the unit disc where $f(z){\in}\mathcal{N}({\alpha})$, we estimate the modulus of the angular derivative of the function f(z) at the boundary point b with $f(b)={\frac{1}{b}}\int\limits_0^b$ f(t)dt. The sharpness of these inequalities is also proved.

BOUNDS OF HANKEL DETERMINANTS FOR ANALYTIC FUNCTION

  • Ornek, Bulent Nafi
    • Korean Journal of Mathematics
    • /
    • v.28 no.4
    • /
    • pp.699-715
    • /
    • 2020
  • In this paper, we give estimates of the Hankel determinant H2(1) in a novel class 𝓝 (𝜀) of analytical functions in the unit disc. In addition, the relation between the Fekete-Szegö function H2(1) and the module of the angular derivative of the analytical function p(z) at a boundary point b of the unit disk will be given. In this association, the coefficients in the Hankel determinant b2, b3 and b4 will be taken into consideration. Moreover, in a class of analytic functions on the unit disc, assuming the existence of angular limit on the boundary point, the estimations below of the modulus of angular derivative have been obtained.