CRITICAL POINTS RESULT FOR THE $C^{1,1}$ FUNCTIONAL AND THE RELATIVE CATEGORY THEORY

Tacksun Jung* and Q-Heung Choi**

Abstract

We show the existence of at least four nontrivial critical points of the $C^{1,1}$ functional f on the Hilbert space $H=X_{0} \oplus$ $X_{1} \oplus X_{2} \oplus X_{3} \oplus X_{4}, X_{i}, i=0,1,2,3$ are finite dimensional, with $f(0)=0$ when two sublevel subsets, torus with three holes and sphere, of f link, the functional f satisfies sup-inf variatinal linking inequality on the linking subspaces, the functional f satisfies (P.S. $)_{c}$ condition, and $\left.f\right|_{X_{0} \oplus X_{4}}$ has no critical point with level c. We use the deformation lemma, the relative category theory and the critical point theory for the proof of main result.

1. Introduction and statement of main result

Let f be a $C^{1,1}$ functional defined on a Hilbert space H with $f(0)=0$. Here H is a Hilbert space which is a direct sum of five closed subspaces $X_{0}, X_{1}, X_{2}, X_{3}$ and X_{4} with $X_{0}, X_{1}, X_{2}, X_{3}$ of finite dimension. In this paper we investigate the number of nontrivial critical points of the $C^{1,1}$ functional f on H under some conditions on the sublevels sets, torus with three holes and sphere, of f and the shape of f. Micheletti and Saccon prove in [4] that the functional $f \in C^{1,1}(H, R)$ has at least two nontrivial critical points under the conditions that $H=X_{0} \oplus X_{1} \oplus X_{2}, X_{1}$ is finite dimensional, the sublevel sets are the Torue with one hole and the sphere, f satisfies the Torus-Sphere variational linking inequality, f satisfies the (P.S. $)_{c}$ condition, and $\left.f\right|_{X_{0} \oplus X_{2}}$ has no critical point with level c. In this paper we improve this result to the case that the sublevel sets are the torus with three holes and sphere. We show the existence of at least four nontrivial critical points of f on H when the sublevels

[^0]sets, the torus with three holes and sphere, of f link, the functional f satisfies the Sphere-Torus with three holes variational linking inequality, the functional f satisfies $(P . S .)_{c}$ condition, and $\left.f\right|_{X_{0} \oplus X_{4}}$ has no critical point with level c.

Now, we state the main result:
Theorem 1.1. Let $f: H \rightarrow R$ be a $C^{1,1}$ functional defined on a Hilbert space $H=X_{0} \oplus X_{1} \oplus X_{2} \oplus X_{3} \oplus X_{4}$ with $f(0)=0$, where X_{0}, X_{1}, X_{2}, X_{3} and X_{4} are five closed subspaces of H and $X_{0}, X_{1}, X_{2}, X_{3}$ are finite dimensional subspaces. Let $\rho_{1}>0, \rho_{2}>0, \rho_{3}>0, r>0$, $R>0$ with $r<R$ and $R_{1}>0$; we define

$$
\begin{aligned}
& \qquad S_{i}\left(\rho_{i}\right)=\left\{z \in X_{i} \mid\|z\|=\rho_{i}\right\}, i=1,2,3 . \\
& \quad S_{i}\left(\rho_{i}\right)-w_{i}=\left\{z-w_{i} \mid z \in S_{i}\left(\rho_{i}\right), w_{i} \in X_{i}\right\}, i=1,2,3 . \\
& \Delta_{R}^{3}\left(S_{1}\left(\rho_{1}\right)-w_{1}, S_{2}\left(\rho_{2}\right)-w_{2}, S_{3}\left(\rho_{3}\right)-w_{3}, X_{4}\right) \\
& =\left\{z=\left(z_{1}-w_{1}\right)+\left(z_{2}-w_{2}\right)+\left(z_{3}-w_{3}\right)+z_{4} \mid z_{i} \in X_{i}, i=1,2,3,4,\right. \\
& \rho_{1} \leq\left\|z_{1}-w_{1}\right\| \leq R, \rho_{2} \leq\left\|z_{2}-w_{2}\right\| \leq R, \\
& \left.\rho_{3} \leq\left\|z_{3}-w_{3}\right\| \leq R,\left\|z_{4}\right\| \leq R_{1},\|z\| \leq R\right\}, \\
& \Sigma_{R}^{3}\left(S_{1}\left(\rho_{1}\right)-w_{1}, S_{2}\left(\rho_{2}\right)-w_{2}, S_{3}\left(\rho_{3}\right)-w_{3}, X_{4}\right) \\
& =\left\{z=\left(z_{1}-w_{1}\right)+\left(z_{2}-w 2\right)+\left(z_{3}-w_{3}\right)+z_{4} \mid z_{i} \in X_{i}, i=1,2,3,4,\right. \\
& \left\|z_{4}\right\| \leq R_{1},\left\|z_{1}-w_{1}\right\|=\rho_{1},\left\|z_{2}-w_{2}\right\|=\rho_{2}, \\
& \left.\left\|z_{3}-w_{3}\right\|=\rho_{3},\|z\|=R\right\} \\
& \cap\left\{z=z_{1}+z_{2}+z_{3}+z_{4} \mid z_{i} \in X_{i}, i=1,2,3,4,\left\|z_{4}\right\|=R_{1},\right. \\
& \left.\quad \rho_{1} \leq\left\|z_{1}-w_{1}\right\| \leq R,\|z\|=R, w_{1} \in X_{1}\right\} \\
& \cap\left\{z=z_{1}+z_{2}+z_{3}+z_{4} \mid \quad z_{i} \in X_{i},, i=1,2,3,4,\right. \\
& \left.\quad\left\|z_{4}\right\|=R_{1}, \rho_{2} \leq\left\|z_{2}-w_{2}\right\| \leq R,\|z\|=R, w_{2} \in X_{2}\right\} \\
& \cap\left\{z=z_{1}+z_{2}+z_{3}+z_{4} \mid z_{i} \in X_{i}, i=1,2,3,4,\left\|z_{4}\right\|=R_{1},\right. \\
& \left.\quad \rho_{3} \leq\left\|z_{3}-w_{3}\right\| \leq R,\|z\|=R, w_{3} \in X_{3}\right\} .
\end{aligned}
$$

Let

$$
\begin{aligned}
& \alpha=\inf _{\Delta_{R}^{3}\left(S_{1}\left(\rho_{1}\right)-w_{1}, S_{2}\left(\rho_{2}\right)-w_{2}, S_{3}\left(\rho_{3}\right)-w_{3}, X_{4}\right)} f(z), \\
& \beta=\sup _{S_{r}\left(X_{0} \oplus X_{1} \oplus X_{2} \oplus X_{3}\right)} f(z) .
\end{aligned}
$$

(i) Assume that

$$
\sup _{z \in S_{r}\left(X_{0} \oplus X_{1} \oplus X_{2} \oplus X_{3}\right)} f(z)<\inf _{z \in \Sigma_{R}^{3}\left(S_{1}\left(\rho_{1}\right)-w_{1}, S_{2}\left(\rho_{2}\right)-w_{2}, S_{3}\left(\rho_{3}\right)-w_{3}, X_{4}\right)} f(z) .
$$

Critical points result for the $C^{1,1}$ functional and the relative category theory 439
(ii) Assume that the $(P . S .)_{c}$ condition holds for $f, \forall c \in[\alpha, \beta]$.
(iii) Assume that $\left.f\right|_{X_{0} \oplus X_{4}}$ has no critical points with $\alpha \leq f(z) \leq \beta$.
(iv) Moreover we assume $\beta<+\infty$.

Then there exist at least four nontrivial critical points z_{1}, z_{2}, z_{3} and z_{4} for f in $X_{1} \oplus X_{2} \oplus X_{3}$ such that

$$
\begin{aligned}
& \inf _{z \in \Delta_{R}^{3}\left(S_{1}\left(\rho_{1}\right)-w_{1}, S_{2}\left(\rho_{2}\right)-w_{2}, S_{3}\left(\rho_{3}\right)-w_{3}, X_{4}\right)} f(z) \\
& \leq f\left(z_{i}\right) \leq \sup _{z \in S_{r}\left(X_{0} \oplus X_{1} \oplus X_{2} \oplus X_{3}\right)} f(z), \quad i=1,2,3,4 .
\end{aligned}
$$

In section 2 , we recall the notion of the relative category, the deformation lemma and the multiplicity theorem in [4]. In section 3, by the deformation lemma, the relative category theory and the multiplicity theorem in [4] we prove the main theorem.

2. Critical point theory on the manifold

Now, we will consider the critical point theory on the manifold with boundary. Let H be a Hilbert space and M be the closure of an open subset of H such that M can be endowed with the structure of C^{2} manifold with boundary. Let $f: W \rightarrow R$ be a $C^{1,1}$ functional, where W is an open set containing M. For applying the usual topological methods of critical points theory we need a suitable notion of critical point for f on M. We recall the following notions: lower gradient of f on M, $(P . S .)_{c}$ condition and the relative category (see [3]).

Definition 2.1. If $u \in M$, the lower gradient of f on M at u is defined by

$$
\operatorname{grad}_{M}^{-} f(u)= \begin{cases}\nabla f(u) & \text { if } u \in \operatorname{int}(M) \\ \nabla f(u)+[<\nabla f(u), \nu(u)>]^{-} \nu(u) & \text { if } u \in \partial M\end{cases}
$$

where we denote by $\nu(u)$ the unit normal vector to ∂M at the point u, pointing outwards.

We say that u is a lower critical for f on M, if $\operatorname{grad}_{M}^{-} f(u)=0$.
Definition 2.2. Let $c \in R$. We say that f satisfies the $(P . S .)_{c}$ condition for $c \in R$, on the manifold with boundary M, if for any sequence $\left(u_{n}\right)_{n}$ in M such that $f\left(u_{n}\right) \rightarrow c, \operatorname{grad}_{M}^{-} f\left(u_{n}\right) \rightarrow 0$, there exists a subsequence of $\left(u_{n}\right)_{n}$ which converges to a point $u \in M$ such that $\operatorname{grad}_{M}^{-} f(u)=0$.

Let Y be a closed subspace of M.

Definition 2.3. Let B be a closed subset of M with $Y \subset B$. We define the relative category $\operatorname{cat}_{M, Y}(B)$ of B in (M,Y), as the least integer h such that there exist $h+1$ closed subsets $U_{0}, U_{1}, \ldots, U_{h}$ with the following properties:
$B \subset U_{0} \cup U_{1} \cup \ldots \cup U_{h} ;$
U_{1}, \ldots, U_{h} are contractible in M;
$Y \subset U_{0}$ and there exists a continuous map $F: U_{0} \times[0,1] \rightarrow M$ such that

$$
\begin{array}{rll}
F(x, 0) & =x & \forall x \in U_{0}, \\
F(x, t) \in Y & \forall x \in Y, \forall t \in[0,1], \\
F(x, 1) \in Y & \forall x \in U_{0} .
\end{array}
$$

If such an h does not exist, we say that $\operatorname{cat}_{M, Y}(B)=+\infty$.
Let Y be a fixed subset of M. We set

$$
\begin{gathered}
\mathcal{B}_{\mathrm{i}}=\left\{\mathrm{B} \subset \mathrm{M} \mid \operatorname{cat}_{(\mathrm{M}, \mathrm{Y})}(\mathrm{B}) \geq \mathrm{i}\right\}, \\
c_{i}=\inf _{B \in \mathcal{B}_{\mathrm{i}}} \sup _{x \in B} f(x) .
\end{gathered}
$$

We have the following multiplicity theorems, which was proved in [4].
Theorem 2.4. Let $i \in N$ and assume that
(1) $c_{i}<+\infty$,
(2) $\sup _{x \in Y} f(x)<c_{i}$,
(3) the (P.S.) $)_{c}$ condition holds for $c \in R$.

Then there exists a lower critical point x such that $f(x)=c_{i}$. If

$$
c_{i}=c_{i+1}=\ldots=c_{i+k-1}=c,
$$

then

$$
\operatorname{cat}_{M}\left(\left\{x \in M \mid f(x)=c, \operatorname{grad}_{M}^{-} f(x)=0\right\}\right) \geq k .
$$

We recall the " nonsmooth" version of the classical Deformation Lemma in [1].

Lemma 2.5. (Deformation Lemma) Let $h: H \rightarrow R \cup\{+\infty\}$ be a lower semi-continuous function and assume h to be φ-convex of order 2 . Let $c \in R, \delta>0$ and D be a closed set in H such that

$$
\inf \left\{\left\|\operatorname{grad}_{M}^{-} h(x)\right\| \mid c-\delta \leq h(x) \leq c+\delta, \quad \operatorname{dist}(x, D)<\delta\right\}>0 .
$$

Then there exists $\epsilon>0$ and a continuous deformation $\eta: h^{c+\epsilon} \cap D \times$ $[0,1] \rightarrow h^{c+\epsilon} \cap D_{\delta}\left(D_{\delta}\right.$ is the δ-neighborhood of D and $h^{c}=\{x \mid h(x) \leq c\}$) such that
(i) $\eta(x, 0)=x \quad \forall x \in h^{c+\epsilon} \cap D$,

Critical points result for the $C^{1,1}$ functional and the relative category theory 441
(ii) $\eta(x, t)=x \quad \forall x \in h^{c-\epsilon} \cap D, \forall t \in[0,1]$,
(iii) $\eta(x, 1) \in h^{c-\epsilon} \quad \forall x \in h^{c+\epsilon} \cap D, \forall t \in[0,1]$.

3. Proof of Theorem 1.1

Let H be a Hilbert space with $H=X_{0} \oplus X_{1} \oplus X_{2} \oplus X_{3} \oplus X_{4}$. Here X_{0}, X_{1}, X_{2}, X_{3} and X_{4} are five closed subspaces of H and $X_{0}, X_{1}, X_{2}, X_{3}$ are finite dimensional subspaces. Let $f: H \rightarrow R$ be a $C^{1,1}$ functional defined on a Hilbert space H with $f(0)=0$. Let $P_{X_{1} \oplus X_{2} \oplus X_{3}}$ be the orthogonal projection from H onto $X_{1} \oplus X_{2} \oplus X_{3}$ and

$$
\begin{equation*}
C=\left\{z \in H \mid\left\|P_{X_{1} \oplus X_{2} \oplus X_{3}} z\right\| \geq 1\right\} . \tag{3.1}
\end{equation*}
$$

Then C is the smooth manifold with boundary. Let us define a functional $\Psi: H \backslash\left\{X_{0} \oplus X_{4}\right\} \rightarrow H$ by

$$
\begin{align*}
& \Psi(z)=z-\frac{P_{X_{1} \oplus X_{2} \oplus X_{3}} z}{\left\|P_{X_{1} \oplus X_{2} \oplus X_{3}} z\right\|}=P_{X_{0} \oplus X_{4}} z \\
& +\left(1-\frac{1}{\left\|P_{X_{1} \oplus X_{2} \oplus X_{3}} z\right\|}\right) P_{X_{1} \oplus X_{2} \oplus X_{3}} z . \tag{3.2}
\end{align*}
$$

We have

$$
\begin{gather*}
\nabla \Psi(z)(w)=w-\frac{1}{\left\|P_{X_{1} \oplus X_{2} \oplus X_{3}} z\right\|}\left(P_{X_{1} \oplus X_{2} \oplus X_{3}} w\right. \\
\left.-\left\langle\frac{P_{X_{1} \oplus X_{2} \oplus X_{3}} z}{\left\|P_{X_{1} \oplus X_{2} \oplus X_{3}} z\right\|}, w\right\rangle \frac{P_{X_{1} \oplus X_{2} \oplus X_{3}} z}{\left\|P_{X_{1} \oplus X_{2} \oplus X_{3}} z\right\|}\right) . \tag{3.3}
\end{gather*}
$$

Let us define the functional $\tilde{f}: C \rightarrow R$ by

$$
\begin{equation*}
\tilde{f}=f \circ \Psi \tag{3.4}
\end{equation*}
$$

Then $\tilde{f} \in C_{l o c}^{1,1}$. We note that if \tilde{z} is the critical point of \tilde{f} and lies in the interior of C, then $z=\Psi(\tilde{z})$ is the critical point of f. So it suffices to find the nontrivial critical points of \tilde{f}. We note that

$$
\begin{equation*}
\left\|\operatorname{grad}_{C}^{-} \tilde{f}(\tilde{z})\right\| \geq\left\|P_{X_{0} \oplus X_{4}} \nabla f(\Psi(\tilde{z}))\right\| \quad \forall \tilde{z} \in \partial C \tag{3.5}
\end{equation*}
$$

Let us set

$$
\begin{gathered}
\tilde{S}_{r}=\Psi^{-1}\left(S_{r}\left(X_{0} \oplus X_{1} \oplus X_{2} \oplus X_{3}\right)\right) \\
\tilde{B_{r}}=\Psi^{-1}\left(B_{r}\left(X_{0} \oplus X_{1} \oplus X_{2} \oplus X_{3}\right)\right) \\
\tilde{\Sigma_{R}^{3}}=\Psi^{-1}\left(\Sigma_{R}^{3}\left(S_{1}\left(\rho_{1}\right)-w_{1}, S_{2}\left(\rho_{2}\right)-w_{2}, S_{3}\left(\rho_{3}\right)-w_{3}, X_{4}\right)\right) \\
\tilde{\Delta_{R}^{3}}=\Psi^{-1}\left(\Delta_{R}^{3}\left(S_{1}\left(\rho_{1}\right)-w_{1}, S_{2}\left(\rho_{2}\right)-w_{2}, S_{3}\left(\rho_{3}\right)-w_{3}, X_{4}\right)\right)
\end{gathered}
$$

We note that $\tilde{S}_{r}, \tilde{B_{r}}, \tilde{\Sigma_{R}^{3}}$ and $\tilde{\Delta_{R}^{3}}$ have the same topological structure as $S_{r}, B_{r}, \Sigma_{R}^{3}$ and Δ_{R}^{3} respectively.

By condition (i) of Theorem 1.1, there exist $\rho_{1}>0, \rho_{2}>0, \rho_{3}>0$, $r>0, R>0$ with $R>r$ and $R_{1}>0$ such that

$$
\begin{gathered}
\sup _{\tilde{z} \in \Sigma_{R}^{3}}(-\tilde{f})(\tilde{z})=\sup _{z \in \Sigma_{R}^{3}\left(S_{1}\left(\rho_{1}\right)-w_{1}, S_{2}\left(\rho_{2}\right)-w_{2}, S_{3}\left(\rho_{3}\right)-w_{3}, X_{4}\right)}(-f)(z)< \\
\inf _{z \in S_{r}\left(X_{0} \oplus X_{1} \oplus X_{2} \oplus X_{3}\right)}(-f)(z)=\inf _{\tilde{z} \in \tilde{S_{r}}}(-\tilde{f})(\tilde{z}), \\
\sup _{\tilde{z} \in \Delta_{R}^{3}}(-\tilde{f})(\tilde{z})=\sup _{z \in \Delta_{R}^{3}\left(S_{1}\left(\rho_{1}\right)-w_{1}, S_{2}\left(\rho_{2}\right)-w_{2}, S_{3}\left(\rho_{3}\right)-w_{3}, X_{4}\right)}(-f)(z)<\infty
\end{gathered}
$$

and

$$
\inf _{\tilde{z} \in \tilde{B}_{r}}(-\tilde{f})(\tilde{z})=\inf _{z \in B_{r}\left(X_{0} \oplus X_{1} \oplus X_{2} \oplus X_{3}\right)}(-f)(z)>-\infty
$$

By condition (ii) of Theorem 1.1, $-\tilde{f}$ satisfies the (P.S. $)_{\tilde{c}}$ condition for every real number \tilde{c} such that

$$
\begin{equation*}
\inf _{\tilde{z} \in \tilde{S}_{r}}(-\tilde{f})(\tilde{z}) \leq \tilde{c} \leq \sup _{\tilde{z} \in \tilde{\Delta_{R}^{3}}}(-\tilde{f})(\tilde{z}) \tag{3.6}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
c a t_{\left(C, \tilde{\Sigma^{3}}\right)}\left(\tilde{\Delta^{3}}\right)=4 \tag{3.7}
\end{equation*}
$$

In fact, we consider a continuous deformation $r: \tilde{S}_{r} \backslash X_{0} \times[0,1] \rightarrow \tilde{S}_{r} \backslash X_{0}$ such that

- $r(x, 0)=x, \forall x \in \tilde{S}_{r} \backslash X_{0}$,
- $r(x, t)=x, \forall x \in \tilde{S}_{r} \cap\left(X_{1} \oplus X_{2} \oplus X_{3}\right), \quad \forall t \in[0,1]$,
- $r(x, 1) \in \tilde{S}_{r} \cap\left(X_{1} \oplus X_{2} \oplus X_{3}\right), \quad \forall x \in \tilde{S}_{r} \backslash X_{0}$.

Now we can define, if $x=x_{0}+x_{123}+x_{4} \in X_{0} \oplus\left(X_{1} \oplus X_{2} \oplus X_{3}\right) \oplus X_{4}$, $t \in[0,1]$,

$$
\begin{equation*}
r_{1}(x, t)=x_{0}+\left\|x_{123}+x_{4}\right\| r\left(\frac{x_{123}+x_{4}}{\left\|x_{123}+x_{4}\right\|}, t\right) \tag{3.8}
\end{equation*}
$$

Using r_{1}, it is easy to construct a continuous deformation $\eta: C \times[0,1] \rightarrow$ C such that

- $\eta(x, 0)=x, \quad \forall x \in C$
- $\eta(x, t)=x, \quad \forall x \in \tilde{\Delta}^{3}, \forall t \in[0,1]$,
- $\eta(x, 1) \in \Delta^{3}, \quad \forall x \in C$,
- $\eta(x, t) \in C \backslash \tilde{S}_{r}, \quad \forall x \in C \backslash \tilde{S}_{r}, \quad \forall t \in[0,1]$.

The existence of η implies that

$$
\begin{equation*}
c a t_{\left(C, \tilde{\Sigma}^{3}\right)}\left(\tilde{\Delta^{3}}\right)=\operatorname{cat}{\tilde{\left(\Delta^{3}, \Sigma^{3}\right)}}\left(\tilde{\Delta^{3}}\right) . \tag{3.9}
\end{equation*}
$$

We note that the pair $\left(\tilde{\Delta^{3}}, \tilde{\Sigma^{3}}\right)$ is homeomorphic to the pair $\left(\Delta^{3}, \Sigma^{3}\right)$ and the pair $\left(\Delta^{3}, \Sigma^{3}\right)$ is homeomorphic to the pair $\left(\mathcal{B}^{p+1} \times\left\{\left(\mathcal{S}^{q_{1}-1}-\right.\right.\right.$ $\left.\left.w_{1}\right) \cup\left(\mathcal{S}^{q_{2}-1}-w_{2}\right) \cup\left(\mathcal{S}^{q_{3}-1}-w_{3}\right)\right\}, \mathcal{S}^{p} \times\left\{\left(\mathcal{S}^{q_{1}-1}-w_{1}\right) \cup\left(\mathcal{S}^{q_{2}-1}-w_{2}\right) \cup\right.$

Critical points result for the $C^{1,1}$ functional and the relative category theory 443
$\left.\left(\mathcal{S}^{q_{3}-1}-w_{3}\right)\right\}$), where $p=\operatorname{dim} X_{1}, q_{1}=\operatorname{dim} X_{1}, q_{2}=\operatorname{dim} X_{2}, q_{3}=$ $\operatorname{dim} X_{3}$ and $\mathcal{B}^{r}, \mathcal{S}^{r}$ denote the r-dimensional ball, the r-dimensional sphere, respectively. Thus the pair $\left(\tilde{\Delta}^{3}, \tilde{\Sigma^{3}}\right)$ is homeomorphic to the pair $\left(\mathcal{B}^{p+1} \times\left\{\left(\mathcal{S}^{q_{1}-1}-w_{1}\right) \cup\left(\mathcal{S}^{q_{2}-1}-w_{2}\right) \cup\left(\mathcal{S}^{q_{3}-1}-w_{3}\right)\right\}, \mathcal{S}^{p} \times\left\{\left(\mathcal{S}^{q_{1}-1}-\right.\right.\right.$ $\left.\left.\left.w_{1}\right) \cup\left(\mathcal{S}^{q_{2}-1}-w_{2}\right) \cup\left(\mathcal{S}^{q_{3}-1}-w_{3}\right)\right\}\right)$. This fact imply that

$$
\begin{equation*}
c a t_{\left(C, \Sigma_{R}^{3}\right)}\left(\tilde{\Delta_{R}^{3}}\right)=4 \tag{3.10}
\end{equation*}
$$

Let us set

$$
\begin{align*}
& \mathcal{A}_{1}=\left\{A \subset C \mid c a t_{\left(C, \tilde{\Sigma_{R}^{3}}\right)}(A) \geq 1\right\}, \\
& \mathcal{A}_{2}=\left\{A \subset C \mid c a t_{\left(C, \tilde{\Sigma_{R}^{3}}\right)}(A) \geq 2\right\}, \tag{3.11}\\
& \mathcal{A}_{3}=\left\{A \subset C \mid c a t_{\left(C, \tilde{\Sigma_{R}^{3}}\right)}(A) \geq 3\right\}, \\
& \mathcal{A}_{4}=\left\{A \subset C \mid c a t_{\left(C, \tilde{\Sigma_{R}^{3}}\right)}(A) \geq 4\right\} .
\end{align*}
$$

Since $\operatorname{cat}_{\left(C, \tilde{\Sigma_{R}^{3}}\right)}\left(\tilde{\Delta_{R}^{3}}\right)=4, \tilde{\Delta_{R}^{3}} \in \mathcal{A}_{i}, i=1,2,3$. Let us set

$$
\begin{align*}
& \tilde{c_{1}}=\inf _{A \in \mathcal{A}_{1}} \sup _{\tilde{z} \in A}(-\tilde{f})(\tilde{z}), \quad \tilde{c_{2}}=\inf _{A \in \mathcal{A}_{2}} \sup _{\tilde{z} \in A}(-\tilde{f})(\tilde{z}), \tag{3.12}\\
& \tilde{c_{3}}=\inf _{A \in \mathcal{A}_{3}} \sup _{\tilde{z} \in A}(-\tilde{f})(\tilde{z}), \quad \tilde{c_{4}}=\inf _{A \in \mathcal{A}_{4}} \sup _{\tilde{z} \in A}(-\tilde{f})(\tilde{z}) .
\end{align*}
$$

We first claim that $\tilde{c_{i}}<\infty, i=1,2,3,4$. In fact, from the facts that

$$
\sup _{z \in \Delta_{R}^{3}\left(S_{1}\left(\rho_{1}\right)-w_{1}, S_{2}\left(\rho_{2}\right)-w_{2}, S_{3}\left(\rho_{3}\right)-w_{3}, X_{4}\right)}(-f)(z)<\infty
$$

and $\tilde{\Delta_{R}^{3}} \in \mathcal{A}_{i}, i=1,2,3,4$, we have that

$$
\begin{aligned}
\tilde{c}_{i} & =\inf _{A \in \mathcal{A}_{i}} \sup _{\tilde{z} \in A}(-\tilde{f})(\tilde{z}) \leq \sup _{\tilde{z} \in \Delta_{R}^{3}}(-\tilde{f})(\tilde{z}) \\
& =\sup _{z \in \Delta_{R}^{3}\left(S_{1}\left(\rho_{1}\right)-w_{1}, S_{2}\left(\rho_{2}\right)-w_{2}, S_{3}\left(\rho_{3}\right)-w_{3}, X_{4}\right)}(-f)(z)<\infty .
\end{aligned}
$$

We also claim that $\sup _{\tilde{z} \in \tilde{\Sigma_{R}^{3}}}(-\tilde{f})(\tilde{z}) \leq \tilde{c}_{i}, i=1,2,3,4$. In fact, for any $A \in \mathcal{A}_{i}$ with $\tilde{\Sigma_{R}^{3}} \subset A, i=1,2,3,4$,

$$
\begin{equation*}
\sup _{\tilde{z} \in \tilde{\Sigma}_{R}^{3}}(-\tilde{f})(\tilde{z}) \leq \sup _{\tilde{z} \in A}(-\tilde{f})(\tilde{z}) \tag{3.13}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sup _{\tilde{z} \in \tilde{\Sigma}_{R}^{3}}(-\tilde{f})(\tilde{z}) \leq \inf _{A \in \mathcal{A}_{i}} \sup _{\tilde{z} \in A}(-\tilde{f})(\tilde{z})=\tilde{c_{i}}, i=1,2,3,4 \tag{3.14}
\end{equation*}
$$

By condition (ii) of Theorem 1.1, $-\tilde{f}$ satisfies the (P.S.) \tilde{c} condition for any real number \tilde{c} with $\inf _{\tilde{z} \in \tilde{S}_{r}}(-\tilde{f})(\tilde{z}) \leq \tilde{c} \leq \sup _{\tilde{z} \in \Delta_{R}^{\tilde{3}}}(-\tilde{f})(\tilde{z})$. Thus, by Theorem 2.1, there exist four nontrivial critical points $\tilde{z_{1}}, \tilde{z_{2}}, \tilde{z_{3}}, \tilde{z_{4}}$ of the functional $-\tilde{f}$ such that

$$
\begin{equation*}
\tilde{c_{1}}=(-\tilde{f})\left(\tilde{z_{1}}\right), \quad \tilde{c_{2}}=(-\tilde{f})\left(\tilde{z_{2}}\right), \quad \tilde{c_{3}}=(-\tilde{f})\left(\tilde{z_{3}}\right), \quad \tilde{c_{4}}=(-\tilde{f})\left(\tilde{z_{4}}\right) \tag{3.15}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\inf _{\tilde{z} \in \tilde{S_{r}}}(-\tilde{f})(\tilde{z}) \leq \tilde{c_{1}} \leq \tilde{c_{2}} \leq \tilde{c_{3}} \leq \tilde{c_{4}} \leq \sup _{\tilde{z} \in \Delta_{R}^{3}}(-\tilde{f})(\tilde{z}) \text {. } \tag{3.16}
\end{equation*}
$$

Since $\operatorname{cat}_{\left(C, \tilde{\Sigma_{R}^{3}}\right)}\left(\tilde{\Delta_{R}^{3}}\right)=4, \tilde{\Delta_{R}^{3}} \in \mathcal{A}_{4}$ and hence

$$
\begin{equation*}
\tilde{c_{4}}=\inf _{A \in \mathcal{A}_{4}} \sup _{\tilde{z} \in A}(-\tilde{f})(\tilde{z}) \leq \sup _{\tilde{z} \in \Delta_{R}^{3}}(-\tilde{f})(\tilde{z}), \forall A \in \mathcal{A}_{4} . \tag{3.1}
\end{equation*}
$$

For the proof of $\tilde{c_{1}} \geq \inf _{\tilde{z} \in \tilde{S_{r}}}(-\tilde{f})(\tilde{z})$, we construct a deformation η^{\prime} : $C \backslash \tilde{S}_{r} \times[0,1] \rightarrow C \backslash \tilde{S}_{r}$ such that

- $\eta^{\prime}(x, 0)=x, \quad \forall x \in C \backslash \tilde{S}_{r}$,
- $\eta^{\prime}(x, t)=x, \quad \forall x \in \tilde{\Sigma^{3}}, \forall t \in[0,1]$,
- $\eta^{\prime}(x, 1) \in \tilde{\Sigma}^{3}, \quad \forall x \in C$.

Actually η^{\prime} can be defined by taking the retraction of η on $C \backslash \tilde{S}_{r}$ followed by a retraction of $\tilde{\Delta^{3}} \backslash \tilde{S}_{r}$ to $\tilde{\Sigma}^{3}$. The existence of η^{\prime} implies that any $A \in \mathcal{A}_{1}$ must intersect \tilde{S}_{r}. So $\sup (-\tilde{f})(A) \geq \inf _{\tilde{z} \in \tilde{S}_{r}}(-\tilde{f})(\tilde{z}), \forall A \in \mathcal{A}_{1}$. So we have $\tilde{c_{1}}=\inf _{A \in \mathcal{A}_{1}} \sup _{\tilde{z} \in A}(-\tilde{f})(\tilde{z}) \geq \inf _{\tilde{z} \in \tilde{S}_{r}}(-\tilde{f})(\tilde{z})$. Therefore there exist at least four nontrivial critical points $\tilde{z_{1}}, \tilde{z_{2}}, \tilde{z_{3}}, \tilde{z_{4}}$ for the functional $-\tilde{f}$ such that

$$
\begin{aligned}
\inf _{\tilde{z} \in \tilde{S}_{r}}(-\tilde{f})(\tilde{z}) & \leq(-\tilde{f})\left(\tilde{z_{1}}\right) \leq(-\tilde{f})\left(\tilde{z_{2}}\right) \leq(-\tilde{f})\left(\tilde{z_{3}}\right) \\
& \leq(-\tilde{f})(\tilde{z}) \leq \sup _{\tilde{z} \in \Delta_{R}^{3}}(-\tilde{f})(\tilde{z}) .
\end{aligned}
$$

Setting $z_{i}=\Psi\left(\tilde{z_{i}}\right), i=1,2,3,4$, we have

$$
\begin{align*}
\inf _{z \in S_{r}}(-f)(z) & =\inf _{\tilde{z} \in \tilde{S}_{r}}(-\tilde{f})(\tilde{z}) \leq(-f)\left(z_{1}\right) \leq(-f)\left(z_{2}\right) \leq(-f)\left(z_{3}\right) \\
\leq & (-f)\left(z_{4}\right) \leq \sup _{\tilde{z} \in \Delta_{R}^{3}}(-\tilde{f})(\tilde{z})=\sup _{z \in \Delta_{R}^{3}}(-f)(z) . \tag{3.18}
\end{align*}
$$

Thus we have

$$
\inf _{z \in \Sigma_{R}^{3}\left(S_{1}\left(\rho_{1}\right)-w_{1}, S_{2}\left(\rho_{2}\right)-w_{2}, S_{3}\left(\rho_{3}\right)-w_{3}, X_{4}\right)} f(z) \leq f\left(z_{4}\right) \leq f\left(z_{3}\right)
$$

Critical points result for the $C^{1,1}$ functional and the relative category theory 445

$$
\begin{equation*}
\leq f\left(z_{2}\right) \leq f\left(z_{1}\right) \leq \sup _{z \in S_{r}\left(X_{0} \oplus X_{1} \oplus X_{2} \oplus X_{3}\right)} f(z) . \tag{3.19}
\end{equation*}
$$

We claim that $\tilde{z}_{i} \notin \partial C$, that is $z_{i} \notin X_{0} \oplus X_{4}$, which implies that z_{i} are the critical points for f in $X_{1} \oplus X_{2} \oplus X_{3}$. For this we assume by contradiction that $z_{i} \in X_{0} \oplus X_{4}$. From (3.5), $P_{X_{0} \oplus X_{4}} \nabla f\left(z_{i}\right)=0$, namely, $z_{i}, i=1,2,3,4$, are the critical points for $\left.f\right|_{X_{0} \oplus X_{4}}$. By condition (iii) of Theorem 1.1, the critical points z_{i} in $X_{0} \oplus X_{4}$ has no critical values in $\left[\inf _{z \in \Delta_{R}^{3}\left(S_{1}\left(\rho_{1}\right)-w_{1}, S_{2}\left(\rho_{2}\right)-w_{2}, S_{3}\left(\rho_{3}\right)-w_{3}, X_{4}\right)} f(z), \sup _{z \in S_{r}\left(X_{0} \oplus X_{1} \oplus X_{2} \oplus X_{3}\right)} f(z)\right]$, which contradicts to (3.19). Thus $z_{i} \notin X_{0} \oplus X_{4}$. This proves Theorem 1.1.

References

[1] M. Degiovanni, Homotopical properties of a class of nonsmooth functions, Ann. Mat. Pura Appl. 156 (1990), 37-71 .
[2] M. Degiovanni, A. Marino, and M. Tosques, Evolution equation with lack of convexity, Nonlinear Anal. 9 (1985), 1401-1433.
[3] G. Fournier, D. Lupo, M. Ramos, and M. Willem, Limit relative category and critical point theory, Dynam. Report, 3 (1993), 1-23.
[4] A. M. Micheletti, C. Saccon, Multiple nontrivial solutions for a floating beam equation via critical point theory, J. Differential Equations, 170 (2001), 157179.
*
Department of Mathematics
Kunsan National University
Kunsan 573-701, Republic of Korea
E-mail: tsjung@kunsan.ac.kr
**
Department of Mathematics Education
Inha University
Incheon 402-751, Republic of Korea
E-mail: qheung@inha.ac.kr

[^0]: Received May 17, 2008; Accepted August 14, 2008.
 2000 Mathematics Subject Classification: Primary 35J20, 35J35.
 Key words and phrases: $C^{1,1}$ functional, deformation lemma, relative category theory, critical point theory, manifold with boundary, (P.S. $)_{c}$ condition.

