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SINGULARITY ESTIMATES FOR ELLIPTIC SYSTEMS OF

m-LAPLACIANS

Yayun Li and Bei Liu

Abstract. This paper is concerned about several quasilinear elliptic sys-

tems with m-Laplacians. According to the Liouville theorems of those
systems on Rn, we obtain the singularity estimates of the positive C1-

weak solutions on bounded or unbounded domain (but it is not Rn) and
their decay rates on the exterior domain when |x| → ∞. The doubling

lemma which is developed by Polacik-Quittner-Souplet plays a key role

in this paper. In addition, the corresponding results of several special
examples are presented.

1. Introduction

In 2002, Serrin and Zou studied the existence results on the following elliptic
equation of m-Laplacian (cf. [22])

(1) −div(|∇u|m−2∇u) = up, u > 0 in Rn,

where n > 1, p > 1, and m ∈ (1, n). They pointed out that the Sobolev
exponent m∗ − 1 is critical. Namely, (1) exists C1-solution if and only if p ≥
m∗−1. Here m∗ = nm

n−m . In addition, if u is a positive solution of (1) on BR(0)

with 1 < p < nm
n−m − 1, the following singularity estimate holds (cf. Theorem

IV in [22])

(2) u(x) ≤ C[dist(x, ∂BR(0))]
−m

p−m+1 .

When m = 2, (1) is reduced to the Lane-Emden equation. Such an equa-
tion represents many scientific phenomena in astrophysics and mathematical
physics. In addition, it comes into play in the study of the conformal geometry
and the classical inequalities. The corresponding singularity estimate rate was
obtained by Dancer (cf. [5]).

Clearly, those singularity estimate rates can be viewed as boundary blowing-
up results, which imply the Liouville theorems if we let R→∞ in (2).
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On the contrary, Polacik, Quittner and Souplet [18] proved that Liouville
theorems also imply boundary blowing-up estimates (2). The following dou-
bling lemma plays a key role.

Lemma 1.1. Let (X, d) be a complete metric space and let ∅ 6= D ⊂ Σ ⊂ X,
with Σ closed. Set Γ = Σ\D. Finally let M : D → (0,∞) be bounded on
compact subsets of D and fix a real k > 0. If y ∈ D is such that

(3) M(y)dist(y,Γ) > 2k,

then there exists x ∈ D such that

(4) M(x)dist(x,Γ) > 2k, M(x) ≥M(y),

and

M(z) ≤ 2M(x) for all z ∈ D ∩BX(x, kM−1(x)).

Remark 1.1. (a) If Γ = ∅, then dist(x,Γ) := +∞.
(b) Take X = Rn, Ω an open subset of Rn, and put D = Ω, Σ = D, hence

Γ = ∂Ω. Then we have BX(x, kM−1(x)) ⊂ D. Indeed, since D is open, (3)
implies that dist(x,Dc) = dist(x,Γ) > 2kM−1(x).

This lemma was originally employed by Hu [8] to estimate blow-up rates of
nonglobal solutions of parabolic problems. Indeed, it comes into play not only
in establishing equivalence between the Liouville theorems and the rates of the
singularity estimate, but also in the study of the Lane-Emden conjecture. Such
an open problem is that the Lane-Emden system

(5)

{
−4u = vq, u, v > 0 in Rn,
−4v = up, p, q > 0,

has no classical solution as long as the subcritical condition 1
p+1 + 1

q+1 >
n−2
n holds. It was solved for the solutions with radial structure by Mitidieri

(cf. [16]). In 1996, Serrin and Zou [21] pointed out that Lane-Emden system
(5) has no solution with polynomial growth when n = 3. Polacik, Quittner
and Souplet [18] employed the doubling lemma to prove that nonexistence of
bounded solutions implies estimates of boundary blowing-up rate

(6)
u(x) ≤ C[dist(x, ∂BR(0))]−

n(q+1)
pq−1 ,

v(x) ≤ C[dist(x, ∂BR(0))]−
n(p+1)
pq−1 .

Combining with the result of Serrin-Zou, and letting R→∞, one can see that
the Lane-Emden conjecture is solved in case of n = 3. More results about the
Lane-Emden conjecture can be found in [6], [23] and the references therein.

Motivated by the results above, we consider the system with m-Laplacian

(7)

{
−4mu(x) = up1vq1 ,
−4mv(x) = up2vq2 ,

where p1, p2, q1, q2 > 0, m > 1, and 4mu := div(|∇u|m−2∇u).
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Remark 1.2. If it is not stated specially, the solution of (7) in this paper is the
positive C1-weak solution. The definition is analogous to that in [22]. Namely,
we here do not consider the trivial and semi-trivial solutions of (7).

Write

α =
m(q2 − q1 −m+ 1)

(m− 1− p1)(m− 1− q2)− q1p2
,

β =
m(p1 − p2 −m+ 1)

(m− 1− p1)(m− 1− q2)− q1p2
,

and we always assume in this paper that p1, p2, q1, q2 satisfy max{α, β} > 0.
The main result of this paper is the following theorem.

Theorem 1.2. Assume that (7) does not admit any bounded entire positive so-
lution in Rn. Let Ω 6= Rn be a domain of Rn. There exists C = C(m,n, p1, p2,
q1, q2) > 0 (independent of Ω and (u, v)) such that any solution (u, v) of (7) in
Ω satisfies

(8) u(x) ≤ Cdist−α(x, ∂Ω), v(x) ≤ Cdist−β(x, ∂Ω), x ∈ Ω.

If Ω is an exterior domain, i.e., Ω ⊃ {x ∈ Rn, |x| > R} for some R > 0, then
it follows that

(9) u(x) ≤ C|x|−α, v(x) ≤ C|x|−β , |x| ≥ 2R.

Recall the Liouville theorem in [4]. Let q1p2 > (p1 −m+ 1)(q2 −m+ 1). If
one of the following

(10) min{p1, q2} > m− 1, max{p1 + q1, p2 + q2} ≤
n(m− 1)

n−m
,

(11) max{p1, q2} ≤ m− 1, max{α, β} > n−m
m− 1

,

(12) max{p1, q2} < m− 1, max{α, β} ≥ n−m
m− 1

,

holds, then (7) has no entire solution on Rn.
By the nonexistence results, we have the corollary.

Corollary 1.3. Let Ω 6= Rn be a domain of Rn, and assume q1p2 > (p1−m+
1)(q2 −m+ 1). If one of (10)-(12) holds, then there exists C = C(m,n, p1, p2,
q1, q2) > 0 (independent of Ω and (u, v)) such that any solution (u, v) of (7) in
Ω satisfies (8). If Ω is an exterior domain, then (9) is true.

A special example of (7) is the following system

(13)

{
−4mu = vq, u, v > 0 in Rn,
−4mv = up, p, q > 0, m > 1.
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If m = 2, (13) becomes (5). In the following, we consider quasilinear systems
with more general right hand sides form than (13):

(14)

{
−4mu(x) = f(v),
−4mv(x) = g(u),

where the functions f : [0,∞)→ R and g : [0,∞)→ R are continuous.

Theorem 1.4. Let p, q > 0 and pq > (m − 1)2. Assume that (13) does not
admit any bounded entire solution in Rn, and assume that

(15) lim
v→∞

v−qf(v) = l1 ∈ (0,∞),

(16) lim
u→∞

u−pg(u) = l2 ∈ (0,∞).

Let Ω be an arbitrary domain of Rn. Then there exists positive constant C =
C(m,n, f, g) > 0 (independent of Ω and (u, v)) such that for any solution (u, v)
of (14) in Ω, there holds

(17) u(x) ≤ C(1 + dist
− m(m+q−1)

pq−(m−1)2 (x, ∂Ω)), x ∈ Ω,

(18) v(x) ≤ C(1 + dist
− m(m+p−1)

pq−(m−1)2 (x, ∂Ω)), x ∈ Ω.

2. Proofs of theorems

Proof of Theorem 1.2. Assume that the Theorem fails. Then, there exist se-
quences Ωk, (uk, vk), yk ∈ Ωk, such that (uk, vk) solves (7) on Ωk. It is easy to
see that

(19) Mk := u
1/α
k + v

1/β
k , k = 1, 2, . . .

satisfies

(20) Mk(yk) > 2k dist−1(yk, ∂Ωk).

By Lemma 1.1 and Remark 1.1(b), there exists xk ∈ Ωk such that

(21) Mk(xk) > 2k dist−1(yk, ∂Ωk)

and

(22) Mk(z) ≤ 2Mk(xk), |z − xk| ≤ kM−1(xk).

Now we rescale (uk, vk) by setting

(23)

{
λk = M−1k (xk),

ũk(y) := λαkuk(xk + λky), ṽk(y) := λβkvk(xk + λky), |y| ≤ k.

Since (α+ 1)(m− 1) + 1 = αp1 + βq1 and (β + 1)(m− 1) + 1 = αp2 + βq2, we
see that (ũk, ṽk) still solves

(24)

{
−4mũk(y) = ũp1k (y)ṽq1k (y),
−4mṽk(y) = ũp2k (y)ṽq2k (y),



SINGULARITY ESTIMATES FOR ELLIPTIC SYSTEMS OF m-LAPLACIANS 1427

for |y| ≤ k. In addition,

(25) [ũ
1/α
k + ṽ

1/β
k ](0) = 1

and

(26) [ũ
1/α
k + ṽ

1/β
k ](y) ≤ 2, |y| ≤ k.

According to the estimate in [25], there exists γ ∈ (0, 1) such that ũk, ṽk are

bounded in C1+γ
loc (Rn). Thus, we can find some subsequence of (ũk, ṽk) denoted

by itself converging in C1
loc(Rn) to a pair of solutions (ũ, ṽ) of (7) on Rn.

Moreover [ũ1/α + ṽ1/β ](0) = 1 by (25), hence (ũ, ṽ) is positive, and moreover,
ũ, ṽ are bounded due to (26). This contradicts the assumption of Theorem
1.2. �

Proof of Theorem 1.4. Assume that the Theorem fails. Keeping the same nota-
tions as in the proof of Theorem 1.2, we have sequences Ωk, (uk, vk), yk ∈ Ωk,
such that (uk, vk) solves (14) on Ωk. In addition,

(27) Mk(yk) > 2k(1 + dist−1(yk, ∂Ωk)) > 2k dist−1(yk, ∂Ωk).

Then, formulas (19)–(26) are unchanged except that (24) is replaced by

(28)

{
−4muk(y) = fk(vk(y)) := λ

(α+1)(m−1)+1
k f(λ−αk vk(y)),

−4mvk(y) = gk(uk(y)) := λ
(β+1)(m−1)+1
k g(λ−βk uk(y)).

Here |y| ≤ k, α = m(m+q−1)
pq−(m−1)2 and β = m(m+p−1)

pq−(m−1)2 . In view of Mk(xk) ≥
Mk(yk) > 2k, we also have

(29) λk → 0, k →∞.

Clearly, for s ≥ 0,

(30)

{
−C1 ≤ f(s) ≤ C1(1 + sq),
−C2 ≤ g(s) ≤ C2(1 + sp).

Therefore, by using (16) and (17), and noticing the continuity of f, g, we know
that for |y| ≤ k, k = 1, 2, . . .,

(31)

{
−C1λ

(α+1)(m−1)+1
k ≤ fk(vk(y)) ≤ C ′1,

−C2λ
(β+1)(m−1)+1
k ≤ gk(uk(y)) ≤ C ′2.

According to the estimate in [25], there exists γ ∈ (0, 1), such that uk, vk are

bounded in C1+γ
loc (Rn). Then there exists some subsequence of (uk, vk) denoted

by itself converging in C1
loc(Rn) to a pair of positive functions (u, v) which

satisfies

(32)

{
−4mu ≥ 0,
−4mv ≥ 0,

on Rn. Moreover [u1/α + v1/β ](0) = 1 by (25). Therefore, (u, v) is nontrivial,
hence u(y), v(y) > 0, y ∈ Rn by the strong maximum principle for the single
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inequality of m-Laplacian (see Lemma 2.1 in [22]). Using assumption (15) and
(16) again, we deduce that for each y ∈ Rn,

(33)

{
fk(vk(y))→ l1v

q(y),
gk(uk(y))→ l2u

p(y),

as k →∞. Consequently, (u, v) is a solution of

(34)

{
−4mu = l1v

q,
−4mv = l2u

p,

with y ∈ Rn. Clearly, there exist C1, C2 > 0 such that (U, V ) := (C1u,C2v)
is a pair of entire solution of (13). Furthermore, U and V are bounded due to
(26). This contradicts the assumption of Theorem 1.4. �

3. Several special cases

According to Theorem 1.2, to obtain the singularity estimates, we should be
concerned with the conditions for the nonexistence of (7). Clearly, the critical
conditions of Sobolev type and Serrin type play the important role. In this
section, we mainly consider several special cases.

Case I: m = 2.
Now, (7) becomes

(35)

{
−4u(x) = up1vq1 ,
−4v(x) = up2vq2 .

This system appears in the study of the two coupled Schrödinger equations (cf.
[13], [14]). The reference [20] shows that the nonexistence of positive solutions
on the bounded domain. The reference [15] shows the radial symmetry of entire
solutions on Rn.

Recall a Liouville theorem related to the Serrin exponent in [1]. Write

α =
2(q2 − q1 − 1)

(1− p1)(1− q2)− q1p2
,

β =
2(p1 − p2 − 1)

(1− p1)(1− q2)− q1p2
.

If (35) has positive entire solutions on Rn, then

(36) max{p1 + q1, p2 + q2} > n/(n− 2), if p1, q2 > 1;

(37) max(α, β) ≤ n− 2, (α, β) 6= (n− 2, n− 2), if p1, q2 ≤ 1;

(38) p1 + q1 ≥ n/(n− 2), α ≤ n− 2, if q2 ≤ 1 < p1;

(39) p2 + q2 ≥ n/(n− 2), β ≤ n− 2, if p1 ≤ 1 < q2,

and one inequality is strict in (38) and (39).
Moreover, we assume p1+q1 = p2+q2 > 1. Quittner and Souplet [19] proved

the nonexistence of the entire solutions on Rn when p1 + q1 is not larger than
the Serrin exponent n

n−2 . The Sobolev exponent 2∗ − 1 may be not critical for
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the existence of positive entire solutions of (35) on exterior domain. In fact, [2]
shows that there exists a pair of solutions of

(40)

{
−4u(x) = upvq+1,
−4v(x) = up+1vq,

in the case of subcritical, which one converges to a positive constant and the
other decays to zero when |x| → ∞. Recently, Li and Lei [12] proved that
(40) has no positive classical solution when p + q + 1 < 2∗ − 1. Meanwhile,
the singularity estimate of the positive solution (u, v) of (40) on the domain
Ω( 6= Rn)

u(x), v(x) ≤ Cdist−
2

p+q (x, ∂Ω), ∀ x ∈ Ω,

was obtained by the doubling lemma.
In the critical case p + q = 2∗ − 1, Li and Ma [11] classified the positive

integrable solutions of

(41)

{
−4u(x) = upvq,
−4v(x) = uqvp.

In addition, an analogous result for (40) was obtained in [12].
Come back to (35). Besides Corollary 1.3 with m = 2, we have another

corollary based on Theorem 1.2 and the Liouville type results in [1] and [19]
mentioned above.

Corollary 3.1. Let Ω 6= Rn be a domain of Rn. If either 1 < p1 + q1 =
p2 + q2 ≤ n

n−2 and max{α, β} > 0, or one of the items in (36)-(39) fails, then

there exists C = C(m,n, p1, p2, q1, q2) > 0 (independent of Ω and (u, v)) such
that any solution (u, v) of (35) in Ω satisfies

u(x) ≤ Cdist−α(x, ∂Ω), v(x) ≤ Cdist−β(x, ∂Ω), x ∈ Ω.

If Ω is an exterior domain, then it follows that

u(x) ≤ C|x|−α, v(x) ≤ C|x|−β , |x| ≥ 2R.

Case II: m 6= 2.
Subcase II.1: p1 = q2 := p, q1 = p2 := q.
Now, (7) becomes

(42)

{
−4mu(x) = upvq,
−4mv(x) = uqvp.

Here p, q > 0 and p+ q > m− 1. In particular, when m = 2, (42) is reduced to
(41).

When p + q = m∗ − 1 and m ∈ (1, 2], the positive entire Lm
∗
-solutions of

(42) on Rn converge to zero with the fast decay rate n−m
m−1 (cf. [9]). Namely,

when |x| → ∞,

(43) u(x), v(x) ∼ |x|
m−n
m−1 .
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Here, (43) means that when |x| → ∞, there exists C > 1 such that C−1|x|
m−n
m−1

≤ u(x), v(x) ≤ C|x|
m−n
m−1 .

Except for the Liouville theorem in [4], we have another nonexistence result

on the radial solution. When p + q > m − 1 and p ≤ min{n(m−1)n−m , q} (here
n(m−1)
n−m is the Serrin exponent), (42) has no positive entire radial solution (u, v)

on Rn (cf. Corollary 1.3 in [26]). By Theorem 1.2, for all positive radial solutions
(u, v) on the bounded domain and the exterior domain, (8) and (9) still hold
(see the following corollary).

Corollary 3.2. Let Ω = BR(0) and p + q > m − 1 and p ≤ min{n(m−1)n−m , q}.
There exists C = C(m,n, p, q) > 0 such that any positive radial solution (u, v)
of (42) in BR(0) satisfies

u(x), v(x) ≤ Cdist−
m

p+q+1−m (x, ∂BR(0)), x ∈ BR(0).

If Ω = BcR(0) is an exterior domain, then it follows that

u(x), v(x) ≤ C|x|−
m

p+q+1−m , |x| ≥ 2R.

Remark 3.1. Clearly, p ≤ min{n(m−1)n−m , q} is different from (10)-(12). On the
other hand, not all positive solutions are radial except for the ground states
(cf. [3]). Therefore, Corollaries 1.3 and 3.2 do not cover each other.

Remark 3.2. There is a gap between (n−1)m
n−m − 1 and m∗ − 1 where the nonex-

istence is not understood. Different from the results of the single equation (1),
p+ q < m∗ − 1 may be no more the critical condition for the nonexistence for

(42) even if m = 2. It is predictable that the Serrin exponent (n−1)m
n−m − 1 is

critical. However, there is only the related conclusion for radial solutions (cf.
[26]) to our knowledge.

Subcase II.2: p1 = q2 = 0.
Since p1 = q2 = 0, it implies from (7) that

(44)

{
−4mu(x) = vq,
−4mv(x) = up.

Here p, q > 0 and pq > (m− 1)2.
Different from (1) and (5), the conditions related to the nonexistence of

positive entire solutions of (44) are not understood completely. According to
Theorem 5.1(2) in [10], the Sobolev type condition is degenerate (cf. (5.4) in
[10])

m = 2 or p = q = m∗ − 1.

It was obtained by the scaling invariant of system (44) and the norms ‖u‖p+1

and ‖v‖q+1.
However, Corollary 1.8(2) in [10] shows that the Serrin type condition is

critical for the nonexistence of the positive entire integrable solution on Rn and
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the positive entire C1(Rn)-solution satisfying infRn u = infRn v = 0. Namely,
the Liouville theorem holds as long as one of the following two items is true

(45) 0 < pq ≤ (m− 1)2;

(46) pq > (m− 1)2, max{α, β} ≥ n−m
m− 1

.

Here,

α =
m(m+ q − 1)

pq − (m− 1)2
, β =

m(m+ p− 1)

pq − (m− 1)2
.

On the other hand, (5.3) in [10] provides another critical condition

(47)
1

p+m− 1
+

1

q +m− 1
=

n−m
n(m− 1)

.

It was obtained by the scaling invariant of system (44) and other norms
‖u‖p+m−1 and ‖v‖q+m−1 (cf. [10]).

Under this condition and the assumption m ∈ (1, 2], fast decay rates when
|x| → ∞ of the entire solution on Rn are showed in [24]. Namely, if 1 < p ≤ q,
then as |x| → ∞,

u(x) ∼ |x|
m−n
m−1 ;

and
v(x) ∼ |x|

m−n
m−1 , if pn−mm−1 > n;

v(x) ∼ |x|
m−n
m−1 (ln |x|)

1
m−1 , if pn−mm−1 = n;

v(x) ∼ |x|−
n

m−1
p+m−1
q+m−1 , if pn−mm−1 < n.

If 1 < q ≤ p, then the results above still hold by exchanging u and v, as well
as p and q.

When m = 2, these results were obtained in [7].
When p = q, (47) implies

p =
n+m

n−m
(m− 1).

Clearly, it is not the Sobolev exponent m∗ − 1 except for m = 2. But it is
also an important exponent in the study of the separation property of radial
solutions (cf. [17]) and the existence of stable solutions of quasilinear elliptic
equations (cf. [27]).

Corollary 3.3. Let Ω 6= Rn be a domain of Rn. If either (45) or (46) holds,
then there exists C = C(m,n, p, q) > 0 (independent of Ω and (u, v)) such that
any solution (u, v) of (44) in Ω satisfies

u(x) ≤ Cdist−α(x, ∂Ω), v(x) ≤ Cdist−β(x, ∂Ω), x ∈ Ω.

If Ω is an exterior domain, then it follows that

u(x) ≤ C|x|−α, v(x) ≤ C|x|−β , |x| ≥ 2R.
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Remark 3.3. Clearly, (44) is a special case of (14). Subcase II.2 is also an
example for Theorem 1.4.
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