• Title/Summary/Keyword: Layered Oxide

Search Result 183, Processing Time 0.022 seconds

Preparation and Properties of Organic Electroluminescent Devices Using Low Molecule Compounds (저분자 화합물을 이용한 유기 전계발광소자의 제작과 특성 연구)

  • 노준서;조중연;유정희;장영철;장호정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • The multi-layered OELDs(organic electroluminescent devices) were prepared on the patterened ITO (indium tin oxide)/glass substrates by the vacuum thermal evaporation method. The $Alq_3$ (tris-(8-hydroxyquinoline)aluminum) low molecule compound was used as the light emission layer. TPD(triphenyl-diamine) and $\alpha-NPD$ were used as the hole transport layer. CuPc (Copper phthalocyanine) was also used as the hole injection layers. In addition, QD2 (quinacridone2) organic material with $10\AA$ thickness was deposited in the $Alq_3$ emission layer to improve the luminance efficiency. The threshold voltage was about 7V for all devices. The luminance and efficiency of devices was improved by substitution the $\alpha-NPD$ for TPD as the hole as the hole transport layer. The luminance efficiency of the OELD sample with QD2 thin film in the $Alq_3$ emission layer was found to be 1.55 lm/W, which is about 8 times larger value compared to the sample without QD2 thin layer.

  • PDF

Ferroelectric Properties of Bi4Ti3O12 Thin Films Deposited on Si and SrTiO3 Substrates According to Crystal Structure and Orientation (Si 및 SrTiO3 기판 위에 증착된 Bi4Ti3O12 박막의 결정구조 및 배향에 따른 강유전 특성)

  • Lee, Myung-Bok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.543-548
    • /
    • 2018
  • Ferroelectric $Bi_4Ti_3O_{12}$ films were deposited on $SrTiO_3(100)$ and Si(100) substrate by using conductive $SrRuO_3$ films as underlayer, and their ferroelectric and electrical properties were investigated depending on crystal structure and orientation. C-axis oriented $Bi_4Ti_3O_{12}$ films were grown on well lattice-matched pseudo-cubic $SrRuO_3$ films deposited on $SrTiO_3(100)$ substrate, while random-oriented polycrystalline $Bi_4Ti_3O_{12}$ films were grown on $SrRuO_3$ films deposited on Si(100) substrate. The random-oriented polycrystalline film showed a good ferroelectric hysteresis property with remanent polarization ($P_r$) of $9.4{\mu}C/cm^2$ and coercive field ($E_c$) of 84.9 kV/cm, while the c-axis oriented film showed $P_r=0.64{\mu}C/cm^2$ and $E_c=47kV/cm$ in polarizaion vs electric field curve. The c-axis oriented $Bi_4Ti_3O_{12}$ film showed a dielectric constant of about 150 and lower thickness dependence in dielectric constant compared to the random-oriented film. Furthermore, the c-axis oriented $Bi_4Ti_3O_{12}$ film showed leakage current lower than that of the polycrystalline film. The difference of ferroelectric properties in two films was explained from the viewpoint of depolarization effect due to orientation of spontaneous polarization and layered crystal structure of bismuth-base ferroelectric oxide.

Comparative study on the morphological properties of graphene nanoplatelets prepared by an oxidative and non-oxidative route

  • An, Jung-Chul;Lee, Eun Jung;Yoon, So-Young;Lee, Seong-Young;Kim, Yong-Jung
    • Carbon letters
    • /
    • v.26
    • /
    • pp.81-87
    • /
    • 2018
  • Morphological differences in multi-layered graphene flakes or graphene nanoplatelets prepared by oxidative (rGO-NP, reduced graphene oxide-nanoplatelets) and non-oxidative (GIC-NP, graphite intercalation compound-nanoplatelets) routes were investigated with various analytical methods. Both types of NPs have similar specific surface areas but very different structural differences. Therefore, this study proposes an effective and simple method to identify structural differences in graphene-like allotropes. The adsorptive potential peaks of rGO-NP attained by the density functional theory method were found to be more scattered over the basal and non-basal regions than those of GIC-NP. Raman spectra and high resolution TEM images showed more distinctive crystallographic defects in the rGO-NP than in the GIC-NP. Because the R-ratio values of the edge and basal plane of the sample were maintained and relatively similar in the rGO-NP (0.944 for edge & 1.026 for basal), the discrepancy between those values in the GIC-NP were found to be much greater (0.918 for edge & 0.164 for basal). The electrical conductivity results showed a remarkable gap between the rGO-NP and GIC-NP attributed to their inherent morphological and crystallographic properties.

Fabrication and Characterization of Multi-layered Thick Films by Room Temperature Powder Spray in Vacuum Process (상온 진공 분말 분사 공정을 이용한 다층 박막 소재의 제조 및 전기적 특성)

  • Ryu, Jung-Ho;Ahn, Cheol-Woo;Kim, Jong-Woo;Choi, Jong-Jin;Yoon, Woon-Ha;Hahn, Byung-Dong;Choi, Joon-Hwan;Park, Dong-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.584-592
    • /
    • 2012
  • Room temperature powder spray in vacuum process, so called Aerosol deposition (AD) is a room temperature (RT) process to fabricate thick and dense ceramic films, based on collision of solid ceramic particles. This technique can provide crack-free dense thin and thick films with thicknesses ranging from sub micrometer to several hundred micrometers with very fast deposition rates at RT. In addition, this technique is using solid particles to form the ceramic films at RT, thus there is few limitation of the substrate and easy to control the compositions of the films. In this article, we review the progress made in synthesis of piezoelectric thin/thick films, multi-layer structures, NTC thermistor thin/thick films, oxide electrode thin films for actuators or sensor applications by AD at Korea Institute of Materials Science (KIMS) during the last 4 years.

Growth and Characteristics of SrBi2Nb2O9 Thin Films for Memory Devices (메모리 소자에의 응용을 위한 SrBi2Nb2O9 박막의 성장 및 전기적 특성)

  • Gang, Dong-Hun;Choe, Hun-Sang;Lee, Jong-Han;Im, Geun-Sik;Jang, Yu-Min;Choe, In-Hun
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.464-469
    • /
    • 2002
  • $SrBi_2Nb_2O_9(SBN)$ thin films were grown on Pt/Ti/Si and p-type Si(100) substrates by rf-magnetron co-sputtering method using two ceramic targets, $SrNb_2O_6\; and \;Bi_2O_3$. The structural and electrical characteristics have been investigated to confirm the possibility of the SBN thin films for the applications to destructive and nondestructive read out ferroelectric random access memory(FRAM). For the optimum growth condition X-ray diffraction patterns showed that SBN films had well crystallized Bi-layered perovskite structure after $700^{\circ}C$ heat-treatment in furnace. From this specimen we got remnant polarization $(2P_r)$ of about 6 uC/$\textrm{cm}^2$ and coercive voltage $(V_c)$ of about 1.5 V at an applied voltage of 5 V. The leakage current density was $7.6{\times}10^{-7}$/A/$\textrm{cm}^2$ at an applied voltage of 5V. And for the NDRO-FRAM application, properties of SBN films on Si substrate has been investigated. From transmission electron microscopy (TEM) analysis, we found the furnace treated sample had a native oxide about 2 times thicker than the RTA treated sample and this thick native oxide layer had a bad effect on C-V characteristics of SBN/Si thin film. After $650^{\circ}C$ RTA process, we got the improved memory window of 1.3 V at an applied voltage of 5 V.

Effect of Particle Size and Doping on the Electrochemical Characteristics of Ca-doped LiCoO2 Cathodes

  • Hasan, Fuead;Kim, Jinhong;Song, Heewon;Lee, Seon Hwa;Sung, Jong Hun;Kim, Jisu;Yoo, Hyun Deog
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.352-360
    • /
    • 2020
  • Lithium cobalt oxide (LiCoO2, LCO) has been widely used as a cathode material for Li-ion batteries (LIBs) owing to its excellent electrochemical performance and highly reproducible synthesis even with mass production. To improve the energy density of the LIBs for their deployment in electro-mobility, the full capacity and voltage of the cathode materials need to exploited, especially by operating them at a higher voltage. Herein, we doped LCO with divalent calcium-ion (Ca2+) to stabilize its layered structure during the batteries' operation. The Ca-doped LCO was synthesized by two different routes, namely solid-state and co-precipitation methods, which led to different average particle sizes and levels of dopant's homogeneity. Of these two, the solid-state synthesis resulted in smaller particles with a better homogeneity of the dopant, which led to better electrochemical performance, specifically when operated at a high voltage of 4.5 V. Electrochemical simulations based on a single particle model provided theoretical corroboration for the positive effects of the reduced particle size on the higher rate capability.

Formation and Current-voltage Characteristics of Molecularly-ordered 4,4',4''-tris(N-(1-naphthyl)-N-phenylamino)-triphenylamine film (분자배열된 4,4',4''-tris(N-(1-naphthyl)-N-phenylamino)-triphenylamine 박막 제조와 전기적 특성)

  • Kang, Do Soon;Choe, Youngson
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.506-510
    • /
    • 2007
  • Vacuum deposited 4,4',4''-tris(N-(1-naphthyl)-N-phenylamino)-triphenylamine (1-TNATA), a widely-used semiconductor material, is placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in OLEDs and a well-stacked 1-TNATA layer leads to stable and high efficiency devices by reducing the carrier injection barrier at the interface between the ITO anode and hole transport layers. According to Raman spectra, thermal annealing after deposition as well as electromagnetic field treatment during deposition lead to closer stacking of 1-TNATA molecules and resulted in molecular ordering. By thermal annealing at about $110^{\circ}C$, an increase in current flow through the film by over 25% was observed. Molecularly-ordered 1-TNATA films played an important role in achieving higher luminance efficiency as well as higher power efficiency of the multi-layered organic EL devices in the present work. Electromagnetic field treatment during deposition was less effective compared to thermal annealing

Study of High Temperature Corrosion Behavior of Fe-Cr Steel in Sewage Sludge-(SO2-O2-H2O-bal. CO2) mixed Gas Environment (하수슬러지-(SO2-O2-H2O-bal. CO2) 혼합 가스 분위기에서 Fe-Cr 강의 고온부식거동 연구)

  • Kim, Min Jung;Park, Joo Chang;Ryu, In Sun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.72-79
    • /
    • 2020
  • Two Fe-Cr steels of T22 steel and STS430 steel were corroded at 650 and 750℃ for 100hr in sewage sludge-(0.3% SO2-6% O2-10% H2O-balance CO2) mixed gas environment. T22 steel corroded faster than STS430, indicating that the Cr content significantly influence the corrosion rates. T22 formed thick and non-protective Fe2O3 as the major oxide and Fe3O4 as the minor one. With an increase in corrosion temperature, their corrosion rates increased, being accompanied with formation of pores and cracks in the thickened oxide scales that were non-adherent. STS430 steel formed Fe2O3, Fe3O4 as the outer scale and (Fe, Cr)-O as the inner layer by which its corrosion rate is greatly reduced. Both the T22 and STS430 steel samples formed multi-layered scales by outward diffusion of Fe ions and inward diffusion of oxygen and sulfur ions at high-temperature more than 650℃.

Fabrication of Solid Oxide Fuel Cells via Physical Vapor Deposition with Electron Beam: II. Unit Cell Performance (전자빔 물리증착을 이용한 고체 산화물 연료전지의 제조: II. 단전지 성능)

  • Kim, Hyoung-Chul;Park, Jong-Ku;Jung, Hwa-Young;Son, Ji-Won;Kim, Joo-Sun;Lee, Hae-Weon;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.299-303
    • /
    • 2006
  • In this paper, anode supported SOFC with columnar structured YSZ electrolyte was fabricated via Electron Beam Physical Vapor Deposition (EBPVD) method. Liquid condensation process was employed for the preparation of NiO-YSZ substrate and the high power electron beam deposition method was used for the deposition of YSZ electrolyte film. Double layered cathode with LSM-YSZ and LSM was printed on electrolyte via screen-printing method and fired at $1150^{\circ}C$ in air atmosphere for 3 h. The electrochemical performance and the long-term stability of $5{\times}5cm^2$ single cell were investigated with DC current-voltage characteristics and AC-impedance spectroscopy. According to the investigation, $5{\times}5cm^2$ sized unit cell showed the maximum power density of around $0.76W/cm^2$ at $800^{\circ}C$ and maintained the stable performance over 400 h.

Drug Delivery System Using Electrospun Nanofiber Mats (전기방사된 나노파이버 매트를 이용한 약물전달시스템에 관한 연구)

  • Yoon, Hyeon;Park, Yoon-Kyung;Kim, Geun-Hyung
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.219-223
    • /
    • 2009
  • The nanofibers fabricated by using an electrohydrodynamic process has been used as various applications, such as nano-device, filtering system, protective clothes, wound dressing, and drug delivery system (DDS). Of these applications, the DDS should be needed to minimize side effects of drugs, maximize the properties of medicine, and efficiently deliver the required amount of drugs to the diseased area. In this paper, by using the electro spinning process, which is one of electrohydrodynamic processes, two different types, polycarprolactone and poly(ethylene oxide)/Rhodamine B, of electrospun mats were fabricated layer by layer and the release behavior of Rhodamine B was characterized with time. In addition, to show the feasibility of DDS of this type, we tested release behavior of a peptide of the nanofiber system, a PCL/(Peptide+PEO)/PCL nanofiber mat. The released peptide did not loss biological activities. From these results, we believe that the layered nanofiber mat as a DDS has enough function of a new drug delivery system.