Browse > Article
http://dx.doi.org/10.3740/MRSK.2002.12.6.464

Growth and Characteristics of SrBi2Nb2O9 Thin Films for Memory Devices  

Gang, Dong-Hun (Dept.of Materials Science, Korea University)
Choe, Hun-Sang (Dept.of Materials Science, Korea University)
Lee, Jong-Han (Dept.of Materials Science, Korea University)
Im, Geun-Sik (Dept.of Materials Science, Korea University)
Jang, Yu-Min (Dept.of Materials Science, Korea University)
Choe, In-Hun (Dept.of Materials Science, Korea University)
Publication Information
Korean Journal of Materials Research / v.12, no.6, 2002 , pp. 464-469 More about this Journal
Abstract
$SrBi_2Nb_2O_9(SBN)$ thin films were grown on Pt/Ti/Si and p-type Si(100) substrates by rf-magnetron co-sputtering method using two ceramic targets, $SrNb_2O_6\; and \;Bi_2O_3$. The structural and electrical characteristics have been investigated to confirm the possibility of the SBN thin films for the applications to destructive and nondestructive read out ferroelectric random access memory(FRAM). For the optimum growth condition X-ray diffraction patterns showed that SBN films had well crystallized Bi-layered perovskite structure after $700^{\circ}C$ heat-treatment in furnace. From this specimen we got remnant polarization $(2P_r)$ of about 6 uC/$\textrm{cm}^2$ and coercive voltage $(V_c)$ of about 1.5 V at an applied voltage of 5 V. The leakage current density was $7.6{\times}10^{-7}$/A/$\textrm{cm}^2$ at an applied voltage of 5V. And for the NDRO-FRAM application, properties of SBN films on Si substrate has been investigated. From transmission electron microscopy (TEM) analysis, we found the furnace treated sample had a native oxide about 2 times thicker than the RTA treated sample and this thick native oxide layer had a bad effect on C-V characteristics of SBN/Si thin film. After $650^{\circ}C$ RTA process, we got the improved memory window of 1.3 V at an applied voltage of 5 V.
Keywords
SBN; rf magnetron sputtering; NDRO-FRAM; remnant polarization; RTA; memory window;
Citations & Related Records
연도 인용수 순위
  • Reference
1 /
[ O. Auciello ] / Integrated Ferroelectrics   DOI   ScienceOn
2 川合知二, 工業調査會, 235 (1996)
3 J.F. Scott and C.A. Paz de Araujo, Science 246, 1400 (1989)   DOI   ScienceOn
4 T. Mihara, H. Watanabe and C.A. Paz de Araujo, Jpn, J. Appl. Phy., 32, 4168 (1993)   DOI
5 C.K. Kwok and S.B. Desu, J. Mater. Res., 8, 339 (1993)   DOI
6 L.L. Boyer, N. Velasquez and J.T. Evans, Jpn. J. Appl. Phys., 36, 5799 (1997)   DOI
7 O. Auciello, Integrated Ferroelectrics, 15, 211 (1997)   DOI   ScienceOn
8 H.M. Duiker, P.D. Cuchiaro and L.K. McMillan, Jpn. J. Appl. Phys., 68, 5783 (1990)   DOI
9 B.H. Park, B.S. Kang, S.D. Bu and T.W. Noh, Nature, 401,682 (1999)   DOI
10 C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott and J.F. Scott, Nature, 43, 627 (1995)   DOI   ScienceOn
11 U. Chon, G.C. Yi, and H.M. Jang, Appl. Phys. Lett., 78, N.5, 658 (2001)   DOI   ScienceOn
12 J.F. Scott, L. Kamnerdiner, M. Parris, S. Traynor, V. Ottanbachar, A. Shawbketh and W. C. Oliver, J. Appl. Phys., 64, 787 (1988)   DOI
13 K. Watanabe, M. Tanaka, E. Sumitomo, K. Katori, H. Yagi and J.F. Scott, Appl. Phys. Lett., 73, 126 (1998)   DOI   ScienceOn
14 G.P. Choi, J.H. Park, C.H. Lee, I.D. Kim, and H.G. Kim, Mat. Lett, 45, 08 (2000)
15 H. Ishiwara, FED Journal, 7, 13 (1996)
16 J.T. Evans and R. Womack, IEEE J. Solid State Circuits, 23, 610 (1998)