Browse > Article

Formation and Current-voltage Characteristics of Molecularly-ordered 4,4',4''-tris(N-(1-naphthyl)-N-phenylamino)-triphenylamine film  

Kang, Do Soon (Department of Chemical Engineering, Pusan National University)
Choe, Youngson (Department of Chemical Engineering, Pusan National University)
Publication Information
Applied Chemistry for Engineering / v.18, no.5, 2007 , pp. 506-510 More about this Journal
Abstract
Vacuum deposited 4,4',4''-tris(N-(1-naphthyl)-N-phenylamino)-triphenylamine (1-TNATA), a widely-used semiconductor material, is placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in OLEDs and a well-stacked 1-TNATA layer leads to stable and high efficiency devices by reducing the carrier injection barrier at the interface between the ITO anode and hole transport layers. According to Raman spectra, thermal annealing after deposition as well as electromagnetic field treatment during deposition lead to closer stacking of 1-TNATA molecules and resulted in molecular ordering. By thermal annealing at about $110^{\circ}C$, an increase in current flow through the film by over 25% was observed. Molecularly-ordered 1-TNATA films played an important role in achieving higher luminance efficiency as well as higher power efficiency of the multi-layered organic EL devices in the present work. Electromagnetic field treatment during deposition was less effective compared to thermal annealing
Keywords
1-TNATA; molecular alignment; molecular stacking; electromagnetic field; OLED;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 E. S. Jung, E.-H. Cho, and P.-J. Chung, J. Korean Ind. Eng. Chem., 9, 548 (1998)
2 Z. G. Ji , K. W. Wong, P. K. Tse, R. W. M. Kwok, and W. M. Lau, Thin Solid Films, 402, 79 (2002)   DOI
3 Y. Choe, S. Park, and D. Park, J. Chem. Eng. Japan, 38, 600 (2005)   DOI   ScienceOn
4 S. Oh, D. S. Kang, and Y. Choe, J. Korean Ind. Eng. Chem., 17, 591 (2006)
5 K. P. Khrishnakumar and C. S. Menon, Mater. Lett., 48, 64, (2001)   DOI   ScienceOn
6 S. Yanagiya, S. Nishikata, G. Sazaki, A. Hoshino, K. Nakajima, and T. Inoue, J. Cryst. Growth., 254, 244 (2003)   DOI
7 B. J. Chen, X. W. Sun, T. K. S. Wong, and X Hu, A. Uddin, Appl. Phys. Lett., 84, 063505 (2005)
8 Y. Choe, S. Park, D. W. Park, and W. Kim, Mol. Res., 14, 38 (2006)
9 P. L. Burn, D. D. C. Bradley, R. H. Friend, D. A. Halliday, A. B. Holmes, R. W. Jackson, and A. Kraft, J. Chem. Soc., 1, 3225 (1992)
10 M. I. Boamfa, P. C. M. Christianen, J. C. Maan, H. Engelkamp, and R. J. M. Nolte, Physcia B, 294, 343 (2001)   DOI
11 K. L. Brandon, P. G. Bently, D. D. C. Bradley, and D. A, Dunmur, Synth. Met., 91, 305 (1997)
12 M. M. El-Nahass, Z. El-Gohary, and H. S. Soliman, Opt. Laser Technol., 35, 523, (2003)
13 C. Giebeler, H. Antoniadis, Donal D. C. Bradley, and Y. Shirota, J. Appl. Phys. 85, 1608 (1999)
14 S. H. Askari, S. D. Rughooputh, and F. Wudl, Synth. Met., 29, E129 (1989)