• Title/Summary/Keyword: Landcover change

Search Result 36, Processing Time 0.028 seconds

A Study on Applying SDSS to Landcover Change Detection for Enhanced Performance (토지피복 변화탐지력 제고를 위한 의사결정방법 도입에 관한 연구)

  • Kim, Sun-Soo;Heo, Yong;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.2 s.32
    • /
    • pp.3-12
    • /
    • 2005
  • Change detections are widely used for its usefulness. During the process two factors are important; one is which method is to be adopted and the other is what should be the appropriate critical value. Until far, these factors are mostly decided by users based upon their knowledge from past experiences. In this paper we propose a set of methodologies that allow users maintaining optimal decisions on which change detection method is the desirable one, what might be the suitable critical value, and what does the introducing SDSSs(Spatial Decision Support Systems) to change detections means.

  • PDF

An Analysis of the Coastal Topography and Land Cover Changes in the Haeundae Beach (해운대 해수욕장의 해안지형 및 토지피복 변화 분석)

  • Yang, Ji-Yeon;Choi, Chul-Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.101-115
    • /
    • 2006
  • As coastal erosion is increasing sharply because of sudden changes in the natural environment and increases in artificial development, the problem of coastal erosion become an important issue, socially and economically. To building the data which needed to grasp the situation and find a solution, we need the monitoring system for long-term. In this study, we analyzed the coastal topography and land cover changes in the Haeundae Beach during 60 years. The Haeundae Beach is the most famous beach in the country and coastal erosion are going on. First, we analyzed the change of coastal topography by calculated the coastline and area of the beach using aerial photos during 60 years. We extracted the coastline by digitized on aerial photo and corrected the height of tide level using sounding and GPS survey data. And we computed the area of beach and analyzed the change of area during 60 years. Second, we analyzed the change of land cover using landcover map. We made the detailed landcover map by on-screen digitizing and estimated the soil loss for the area nearby Haeundae Beach. As a result, we could see that the coastline get nearer to land and the area of beach has been reduced in general. We think that interception of sand supply by the development is the artificial cause of coastal erosion. The result of this study would be useful in long-term coastal monitoring and to analyze the cause of coastal environment change. We expect that the result is available on the coastal information system.

  • PDF

Estimation of Flow Loads for Landcover Using HyGIS-SWAT (HyGIS-SWAT을 이용한 토지피복도에 따른 유출부하 평가)

  • Kim, Joo-Hun;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.28-39
    • /
    • 2011
  • This study estimates the characteristics of flow loads by classification items of the Ministry of Environment and by land cover change using HyGIS-SWAT. The result of analyzing the land cover change using the classification items shows that the urban area and the farmland area in Mishim-cheon and Gap-cheon are expanding while the forest area is decreasing. The result of analyzing the characteristics of classification items shows that peak discharge increases and total yearly discharge decreases in Mushim-cheon. The result of analyzing the characteristics by data-construction period shows that peak discharge decreases but total discharge increases in Gap-cheon. Three land cover change scenarios are applicable to the expansion of urban area and farmland area. According to the result of application, urbanization influences and Farmland area expansion influences increase peak discharge, total yearly discharge and sediment concentration.

AN ADAPTED METHOD FOR REDUCING CHANGE DETECTION ERRORS DUE TO POINTING DIRECTION SHIFTS OF A SATELLITE SENSOR

  • Jeong, Jong-Hyeok;Takagi, Masataka
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.126-129
    • /
    • 2005
  • Change detections is carried out under the assumption that pixel boundaries of geometrically corrected time series satellite images cover the same location. However that assumption can be wrong when shifts in the pointing direction of a satellite sensor occurs. Currently, although the influence of misregistration on landcover change detection has been investigated, there has been little research on the influence of pointing direction shifts of a satellite sensor. In this study, a simple method for reducing the effects of pointing direction shifts of a satellite sensor is proposed: the classification of two ASTER images was carried out using the linear spectral mixture analysis, the two classification results were resampled into a geometrically fixed grid, and then the change detection of the two ASTER images was carried out by comparing the resampled classification results of the two images. The proposed method showed high performance in discriminating between changed areas and unchanged areas by removing the pointing direction shifts of a satellite sensor.

  • PDF

Change Detection Using Multispectral Satellite Imagery and Panchromatic Satellite Imagery (다중분광 위성영상과 팬크로매틱 위성영상에 의한 변화 검출)

  • Lee, jin-duk;Han, seung-hee;Cho, hyun-go
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.897-901
    • /
    • 2008
  • The objective of this study is to conduct land cover classification respectively using Landsat TM data collected on Oct., 1985 and KOMPSAT-1 EOC data collected on Jan., 2000 covering Gumi city, Gyeongbuk Province and to detect urban change by comparing between both land cover maps. Multispectral images of Landsat TM have spatial resolution of 30m are well known as useful data for extracting information related to landcover, vegetation classification, urban growth analysis and so forth. In contrast, as KOMPSAT-1 EOC collects panchromatic images with relatively high spatial resolution of 6.6m. We try to analyze how accurate landcover classification result is able to be derived from the panchromatic images. As the results of the study, the KOMPSAT EOC data with high resolution greater than 4 times showed higher classification degree than Landsat TM data. It was ascertained that the built-up region was extended by three to four times in the last 15 years between 1985 and 2000. In the contrast, it was shown that the forest region was decreased by 15% to 27% and the grass region including agricultural region was decreased by 28% to 45%.

  • PDF

Change Detection of a Small Town Area from Multi-Temporal Aerial Photographs (다시기 항공사진으로부터 소도읍 지역의 변화탐지)

  • Lee, Jin-Duk;Yeon, Sang-Ho;Lee, Dong-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.131-137
    • /
    • 2004
  • This study presents the application of multi-temporal aerial photographs in detecting change in a small urban area. For the panchromatic aerial images of the scale of 1/20000 and 1/37500 photographed in 1987, 1996 and 2000, image geometric correction and registration were carried out before performing change detection in a common reference system and then image mosaicking. The image differencing technigue was employed to detect urban features and landcover change and then the results were compared to those of image ratioing techniques. Also threshold values were suggested in applying image differencing for change detection.

  • PDF

A Simulation Study on Future Climate Change Considering Potential Forest Distribution Change in Landcover (잠재 산림분포 변화를 고려한 토지이용도가 장래 기후변화에 미치는 영향 모사)

  • Kim, Jea-Chul;Lee, Chong Bum;Choi, Sungho
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.105-117
    • /
    • 2012
  • Future climate according to land-use change was simulated by regional climate model. The goal of study was to predict the distribution of meteorological elements using the Weather Research & Forecasting Model (WRF). The KME (Korea Ministry of Environment) medium-category land-use classification was used as dominant vegetation types. Meteorological modeling requires higher and more sophisticated land-use and initialization data. The WRF model simulations with HyTAG land-use indicated certain change in potential vegetation distribution in the future (2086-2088). Compared to the past (1986-1988) distribution, coniferous forest area was decreased in metropolitan and areas with complex terrain. The research shows a possibility to simulate regional climate with high resolution. As a result, the future climate was predicted to $4.5^{\circ}$ which was $0.5^{\circ}$ higher than prediction by Meteorological Administration. To improve future prediction of regional area, regional climate model with HyTAG as well as high resolution initial values such as urban growth and CO2 flux simulation would be desirable.

The Reflectance Patterns of land cover During Five Years ($2004{\sim}2008$) Based on MODIS Reflectance Temporal Profiles (시계열 MODIS를 이용한 토지피복의 반사율 패턴: 2004년$\sim$2008년)

  • Yoon, Jong-Suk;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.113-126
    • /
    • 2009
  • With high temporal resolution, four times receiving during a day, MODIS images from Terra and Aqua satellites provide several advantages for monitoring spacious land. Especially, diverse MODIS products related to land, atmosphere, and ocean have been provided with radiance MODIS images. The products such as surface reflectance, NDVI, cloud mask, aerosol etc. are based on theoretical algorithms developed in academic areas. Comparing with other change detection studies mainly using the vegetation index, this study investigated temporal surface reflectance of landcovers for five years from 2004 to 2008. The near infrared (NIR) reflectance in urbanized and burned areas showed considerable difference before and after events. The specific characteristics of surface reflectance temporal profiles are possibly useful for the detection of landcover changes and classification.

Landuse and Landcover Change and the Impacts on Soil Carbon Storage on the Bagmati Basin of Nepal

  • Bastola, Shiksha;Lim, Kyuong Jae;Yang, Jae Eui;Shin, Yongchul;Jung, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.33-39
    • /
    • 2019
  • The upsurge of population, internal migration, economic activities and developmental works has brought significant land use and land cover (LULC) change over the period of 1990 and 2010 in the Bagmati basin of Nepal. Along with alteration on various other ecosystem services like water yield, water quality, soil loss etc. carbon sequestration is also altered. This study thus primary deals with evaluation of LULC change and its impact on the soil carbon storage for the period 1990 to 2010. For the evaluation, InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Carbon model is used. Residential and several other infrastructural development activities were prevalent on the study period and as a result in 2010 major soil carbon reserve like forest area is decreased by 7.17% of its original coverage in 1990. This decrement has brought about a subsequent decrement of 1.39 million tons of carbon in the basin. Conversion from barren land, water bodies and built up areas to higher carbon reserve like forest and agriculture land has slightly increased soil carbon storage but still, net reduction is higher. Thus, the spatial output of the model in the form of maps is expected to help in decision making for future land use planning and for restoration policies.

The Soil Loss Analysis using Landcover of WAMIS - for Musimcheon Watershed - (WAMIS 토지피복도를 활용한 토양유실량 분석 - 무심천 유역을 대상으로 -)

  • Kim, Joo-Hun;Lee, Chung-Dae;Kim, Kyung-Tak;Choi, Yun-Seok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.122-131
    • /
    • 2007
  • This study estimates how soil loss in a basin has been occurred according to the change of land cover, and analyzes which type of land cover has the largest soil loss by classifying the land-cover type into each area and a whole basin. Musimcheon, the second branch stream of GeumGang, is chosen as a research area. The result of analysis shows that the average soil loss occurs most largely in a crop land and a paddy field. The yearly soil loss of watershed estimates approximately 14,000 ton/yr in case of using 100-year-frequency rainfall data. A forest area, which takes the largest area in watershed, shows the soil loss occurs approximately 1,000ton/yr. A crop field shows that soil loss increased most largely 4,900 ton/yr (34.6%) in 1985 to 8,100 ton/yr (56.1%) in 2000. The change of land cover in a crop land increased 8% to 14%, and this change influences on the increase of soil loss. As a result of analyzing the area over $200ton/km^2/yr$, the soil loss in a crop field accounts for 74% to 96%.

  • PDF