• Title/Summary/Keyword: Laguerre functions

Search Result 42, Processing Time 0.018 seconds

OPERATIONAL CALCULUS ASSOCIATED WITH CERTAIN FAMILIES OF GENERATING FUNCTIONS

  • KHAN, REHANA;KHAN, SUBUHI
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.429-438
    • /
    • 2015
  • In this paper, we discuss how the operational calculus can be exploited to the theory of mixed generating functions. We use operational methods associated with multi-variable Hermite polynomials, Laguerre polynomials and Bessels functions to drive identities useful in electromagnetism, fluid mechanics etc. Certain special cases giving bilateral generating relations related to these special functions are also discussed.

Analysis of Transient Electromagnetic Scattering from 3-Dimensional Dielectric Objects by using Time-Domain PMCHW Integral Equation (시간영역 PMCHW 적분식을 이용한 3차원 유전체의 전자파 과도 산란 해석)

  • 정백호;서정훈;한상호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1096-1103
    • /
    • 2003
  • In this paper, we analyze the transient electromagnetic response from three-dimensional(3-D) dielectric bodies using a time-domain PMCHW(Poggio, Miller, Chang, Harrington, Wu) formulation. The solution method in this paper is based on the Galerkin's method that involves separate spatial and temporal testing procedures. Triangular patch basis functions are used for spatial expansion and testing functions for arbitrarily shaped 3-D dielectric structures. The time-domain unknown coefficients of the equivalent currents are approximated by a set of orthonormal basis functions that are derived from the Laguerre polynomials. These basis functions are also used as the temporal testing. Numerical results involving equivalent currents and far fields computed by the proposed method are presented.

Time Domain Combined Field Integral Equation for Transient Electromagnetic Scattering from Dielectric Body (유전체의 전자기 과도산란 해석을 위한 시간영역 결합 적분방정식)

  • Kim Chung-Soo;An Hyun-Su;Park Jae-Kwon;Jung Baek-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.12
    • /
    • pp.626-633
    • /
    • 2004
  • In this paper, we present a time domain combined field integral equation (TD-CFIE) formulation to analyze the transient electromagnetic response from three-dimensional dielectric objects. The solution method in this paper is based on the method of moments (MoM) that involves separate spatial and temporal testing procedures. A set of the RWG (Rao, Wilton, Glisson) functions Is used for spatial expansion of the equivalent electric and magnetic current densities and a combination of RWG and its orthogonal component is used as spatial testing. We also investigate spatial testing procedures for the TD-CFIE to select the proper testing functions that are derived from the Laguerre polynomials. These basis functions are also used for temporal testing. Use of this temporal expansion function characterizing the time variable enables one to handle the time derivative terms in the integral equation and decouples the space-time continuum in an analytic fashion. Numerical results computed by the proposed formulation are presented and compared with the solutions of the frequency domain combined field integral equation (FD-CFIE).

TD-CFIE Formulation for Transient Electromagnetic Scattering from 3-D Dielectric Objects

  • Lee, Young-Hwan;Jung, Baek-Ho;Sarkar, Tapan K.;Yuan, Mengtao;Ji, Zhong;Park, Seong-Ook
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.8-17
    • /
    • 2007
  • In this paper, we present a time domain combined field integral equation formulation (TD-CFIE) to analyze the transient electromagnetic response from dielectric objects. The solution method is based on the method of moments which involves separate spatial and temporal testing procedures. A set of the RWG functions is used for spatial expansion of the equivalent electric and magnetic current densities, and a combination of RWG and its orthogonal component is used for spatial testing. The time domain unknowns are approximated by a set of orthonormal basis functions derived from the Laguerre polynomials. These basis functions are also used for temporal testing. Use of this temporal expansion function characterizing the time variable makes it possible to handle the time derivative terms in the integral equation and decouples the space-time continuum in an analytic fashion. Numerical results computed by the proposed formulation are compared with the solutions of the frequency domain combined field integral equation.

  • PDF

The Incomplete Lauricella Functions of Several Variables and Associated Properties and Formulas

  • Choi, Junesang;Parmar, Rakesh K.;Srivastava, H.M.
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.19-35
    • /
    • 2018
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [30] and the second Appell function [6], we introduce here the incomplete Lauricella functions ${\gamma}^{(n)}_A$ and ${\Gamma}^{(n)}_A$ of n variables. We then systematically investigate several properties of each of these incomplete Lauricella functions including, for example, their various integral representations, finite summation formulas, transformation and derivative formulas, and so on. We provide relevant connections of some of the special cases of the main results presented here with known identities. Several potential areas of application of the incomplete hypergeometric functions in one and more variables are also pointed out.

SOME RESULTS INVOLVING THE MULTIPLE H FUNCTION

  • Mathur, B.L.;Krishna, Shri
    • Kyungpook Mathematical Journal
    • /
    • v.18 no.2
    • /
    • pp.239-244
    • /
    • 1978
  • The object of the present paper is to obtain certain results involving the H function of several complex variables. An integral involving the generalized Whittaker functions and the multiple H function has been evaluated and this result has been further utilized in finding out an expansion formula for the multiple H function in terms of the Laguerre polynomials. Some particular cases of interest have also been indicated.

  • PDF

EXTENSION OF EXTENDED BETA, HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Choi, Junesang;Rathie, Arjun K.;Parmar, Rakesh K.
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.357-385
    • /
    • 2014
  • Recently several authors have extended the Gamma function, Beta function, the hypergeometric function, and the confluent hypergeometric function by using their integral representations and provided many interesting properties of their extended functions. Here we aim at giving further extensions of the abovementioned extended functions and investigating various formulas for the further extended functions in a systematic manner. Moreover, our extension of the Beta function is shown to be applied to Statistics and also our extensions find some connections with other special functions and polynomials such as Laguerre polynomials, Macdonald and Whittaker functions.

CERTAIN INTEGRALS INVOLVING 2F1, KAMPÉDE FÉRIET FUNCTION AND SRIVASTAVA POLYNOMIALS

  • Agarwal, Praveen;Chand, Mehar;Choi, Junesang
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.343-353
    • /
    • 2016
  • A remarkably large number of integrals whose integrands are associated, in particular, with a variety of special functions, for example, the hypergeometric and generalized hypergeometric functions have been recorded. Here we aim at presenting certain (presumably) new and (potentially) useful integral formulas whose integrands are involved in a product of $_2F_1$, Srivastava polynomials, and $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ functions. The main results are derived with the help of some known definite integrals obtained earlier by Qureshi et al. [4]. Some interesting special cases of our main results are also considered.