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CRITICAL ZEROS AND NONREAL
ZEROS OF SUCCESSIVE DERIVATIVES
OF REAL ENTIRE FUNCTIONS

YounG-ONE KM

1. Introduction

This paper is concerned with the zeros of successive derivatives of
real entire functions. In order to state the background to our results,
as well as the results themselves, let us introduce some terminologies.

The order p of an entire function f(z) is defined by

— loglog M(r; f)
p= lim —————"—~
r—oc logr

where M(r; f) is the maximum modulus of f(z) on the circle |z| = r.
If an entire function f(z) is of order p and if 0 < p < oc, then the type
7 of f(z) is defined by

= log M(r; f)
7= lim ————",
T— 00 rf

If 7 = 0, the function f(z) is said to be of minimal type, if 0 < 7 < o0
of mean type, and if 7 = oo of mazimal type. It is well known that
order and type are unchanged by differentiation [L, p. 4, Theorem 2].

Let {a;} be a sequence of complex numbers with |a;| — oo as j —
oc. The convergence exponent of the sequence {a;} is the infimum of
those real numbers p > 0 such that Za,« 20 |a;]7# < oo. 1t is well known
that the convergence exponent of the zeros of an entire function does
not exceed the order of the function [L, p.16, Theorem §].
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The genus of an entire function f(z) is the smallest integer p such
that f(z) can be represented in the form

fz) = an[)(z)H(l B _Z__)C;"T + %(7{;’)2 4+ pl(-(;]_)p
j “

where P(z) is a polynomial of degree < p, n is a nonnegative integer
and the product converges absolutely and uniformly in compact sets
i the plane. Note that if f(z) is of genus p and a;,ay,--- are the
zeros of f(z), then the convergence of the infinite product implies that
Zaﬁéo la;]7?~! < oc. A well known theorem of Hadamard states that
the order p and the genus p of an entire function of finite order satisfy
the double inequality p < p < p+1 L, Chapt. 1, Sec. 10].

A real entire function is an entire function which assumes only real
values on the real axis, and a real entire function f(z) is said to be of
genus 1% 1f it can be expressed in the form

2

flz)=e7"" glz),

where o > 0 and g(z) 1s a real entire function of genus at most 1.
If f(=) 1s a real entire function, then its Maclaurin coefficients are all
real, and consequently the zeros of f{z) are symmetrically located with
respect to the real axis. Let o + 143, with o, 3 € R. denote a pair of
conjugate nonreal zeros of f(z). The closed disk cenrered at the point
z = « with radius |3| will be called a Jensen disk of f(z), and the
union of all the Jensen disks of f(z) will be denoted by J(f). A well
known theorem of Jensen states that if f(z) is a real entire function of
genus 1*, then all the nonreal zeros of f'(z) are distributed in the set
J{f). From here on, this fact will be referred as “Jensen’s theorem.”
(For a proof of Jensen's theorem sec (K2, p. 827].)

Let f(z) be a nonconstant real entire function. Suppose that £ is a
real zero of f1(z) of multiplicity m but not a zero of fU=1(z). That

18

FUE £,
FOE) = fONg) = = fHEm-Dig) = 0,
fEEmgr £ 0.
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Put
m o
5 if m is even,
1
k= T_;:__ if m is odd and  fU=1(¢) fH™(¢) > 0,
-1
T—2—, if m is odd and fU=D (&) fHM)(€) < 0.

If £ > 0, then £ is said to be a critical zero of f(V(z) of the multiplicity
k. The critical zeros of the derivatives of f(z) are the critical points of
f(2).

In 1930, G. Pdlya conjectured the following three hypothetical the-
orems [P1].

A. A real entire function of genus O has just as many critical points
as couples of nonreal zeros.

B. If an entire function of genus 1* has orly a finite number of
nonreal zeros, it has just as many critical points as couples of nonreal
Zeros.

C. If an entire function of genus 1* has ornly a finite number of
nonreal zeros, its derivatives from a certain one onward, let us say
f(m)(zl), fim+(z), ... | have real zeros only.

In the same paper, Polya proved the following theorem which shows
that the hypothetical theorems B and C are equivalent.

THEOREM I. Let f(z) be a nonconstant real entire function of genus
1*, and assume that f(z) has only a finite number of nonreal zeros.
Then f'(z) is also of genus 1* and has finitely many nonreal zeros.
Moreover, if f(z) has 2J nonreal zeros and f'(z) has 2J' nonreal zeros,
then f'(z) has exactly J — J' critical zeros.

The hypothetical theorem C is known as the Pélya-Wiman conjec-
ture and it has been completely proved by T. Craven, G. Csordas, W.
Smith and the author [CCS1, CCS2, K1]. (For a very simple and direct
proof of the Pdélya~Wiman conjecture see [K2].) On the other hand,
the hypothetical theorem A remains unproved until now. Note that
to prove the hypothetical theorem A it is enough to show that if a
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nonconstant real entire function of genus 0 has infinitely many nonreal
zeros, then it has infinitely many eritical points.
Recently, the author proved the following results [K3]:

THEOREM 1I. Let f(z) be a nonconstant real entire function of
genus 1* and suppose that a,b, with a < b, are real numbers which
are located outside the Jensen disks of f(z). Then f!z) and f'(:) have
finitely many zeros in the region a < Rez < b. Moreover, if f(:) has
2J nonreal zeros in a < Rez < b and if f'(z) has 2./ nonreal zeros in
a <Rez <b, then f'(z) has exactly J — J' critical seros in the closed
interval [a, b].

THEOREM II1. Let f(z) be a nonconstant real entire function of
genus 1*, and assume that f(z) is at most of order p, 0 < p < 2, and
minimal type. If there is a positive real number A such that all the
zeros of f(z) are distributed in the infinite strip |l z| < A, then for
any positive constant B there Is a positive integer n; such that F()

e 1
has only real zeros in |[Rez| < Bn® for all n > n;.

THEOREM IV. Let f(z) be a nonconstant real entire function of
order p, and let pe be the convergence exponent of the nonreal zeros
of f(z). If there is a positive real number A such that all the zeros of
f(z) are distributed in the infinite sirip [Im =z} < A and if p+ 2pe- < 2,
then f(z) has just as many critical points as couples of nonreal zeros.

Theorem IV is a consequence of Theorem I1 and Theorem II1. Note
that Theorem Il generalizes Theoremn I, and that Theorem IIT can be
regarded as a local version of the Pdlya - Wiman conjecture.

In this paper. we will consider those real entire "unctions of genus
1* whose nonreal zeros arc distributed in the region

R(k)={z:Rez> (. |Imz] < (Rez)*}

for some k, 0 < k < 1, aud prove the following:

THEOREM 1. Let f(z) be a nonconstant real entire function of genus
1*. Assume that f(z) is at most of order p, 0 < p < 2, and minimal
type, and that there is a constant k. 0 < k < 1, such that the nonreal
zeros of f(z) are distributed in the region R(k). If o < 2(1 — k), then
for each positive constant B there is a positive integer ny such that for
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alln > n, the nonreal zeros of f(")(z) are distributed in the half plane
Rez > Bn*.

‘THEOREM 2. Let f(z) be a nonconstant real entire function of genus
1*. Assume that f(z) is at most of order p, 0 < p < 2, and minimal
type, and that there is a constant k, 0 < k < 1. such that the nonreal
zeros of f(z) are distributed in the region R(k). Let {2;} denote the
sequence of distinct nonreal zeros of f(z). If

Yol < oo,
;

then f(z) has just as many critical points as couples of nonreal zeros.

REMARKS. (a) Theorem 1 implies that the final set (for the defini-
tion, see [P3]) of a real entire function f(z) is contained in the real axis
whenever f(z) satisfies the conditions of Theorem 1.

(b) Let k, 0 < k < 1, be given. Since the convergence exponent of
the zeros of an entire function does not exceed the order of the function,
Theorem 2 establishes the validity of the hypothetical theorem A for
functions of order less than £(1- k) whose nonreal zeros are distributed
in the region R(k).

2. Proof of the theorems

In the proof of our theorems we will use the following:

LEMMA. Let z; = a; + 13, «j,B; €R, j=0,1,--- ,n, be complex
numbers, and assume that

]zj+,—aj'§ﬁj ()=0,1,--- ,n—1).
Then we have the following inequalities:

(a) OSﬂnSﬂn—lSSﬁO

(b) ag—a1|+]a1—a2]+---+[an_1-—an|

< Bo = i+ V/n(Bo? = 3.2),
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and

(an_aﬂ) ‘|‘£

(c) ey 7 S

Proof. Induction on n. O

GONTCHAROFF’S FIRST ESTIMATE. Let f(z) be an analytic func-
tion in a convex domain D. If sup |f(z)| =M < oo, andifz,z9.21.- -,
z€D
Zn_1 € D, then

Cl Cn 1

gn dgn : dCQdQ]

Sm(|5_~0|+|40“41’ + - +|3n-2_~n—1|)n

Proof. See |G, pp. 11-13}. O

GONTCHAROFF’S SECOND ESTIMATE. Let H and o be positive real
numbers and let f(z) be an entire function such that M(r: f) < cHr’
for all sufficiently large r. Let o be an arbitrary positive real number
and let A be the positive root of the equation

Ho) '\ —a)=1.

Then

n—oo

T—— 1 11 TL) o
lim nv (¥1> < Ho)7 el
n!

Proof. See |G, pp. 24-28]. O

Proof of Theorem 1. First of all, note that since f(z) is assumed to
be of order less than 2, all the derivatives of f(z) are of order less than
2. and hence of genus 1*, by Hadamard’s theorem.

Suppose that z, is a nonreal zero of f(™)(z) which lies in the upper
half plane. From Jensen’s Theorem. we can find complex numbers zg,
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1, 22,"* - ,zn—1 such that each z,, j = 0,1,--- ,n — 1, is a nonreal zero

of fU)(z) and that
(1) |z;41 — Rez;| <Imz, (7=0,1,--- ,n—1).

Let z be an arbitrary complex number. Sirce f(]‘)(zj‘) =0, =
0,1,--- ,n — 1, we have

z ¢1 Cn—1
f(s):// / FONC)dCr - - - dipdcy,

and hence Gontcharoff’s first estimate gives

. M
(2) If(z)] < H(IZ —zo|+ 20 — 21|+ + |20z — 20y )"

where M is the maximum of |f(™(¢)] on the convex hull of the set
Zy20,%1:° " ; Zn—11-
For j=1.2,--- ,n,let z; = a, + ¢3;. Then (1) and the inequalities
(a) and (b) of the lemma give

‘ /
(3) leo—z1l+ |21 — 22|+ + |zn—1 — 2za] < Bo— Bn + \/n(ﬁg — 32).

From (1) and the inequality (c) of the lemma, we have

(an"aﬂ)z /ng
—_— 4 —= < 1.

so that
ap — |an| < |y — an| < VnlBs| = VB,

and consequently
(4) Qg — 'an| < \/Ea§7

since zg = ag + iy € R(k). Let A be the positive real number which
satisfies A — |an| = /nA¥, then (4) implies that ag < A, and it is clear
that |a,| < A, and hence we have

Vnag < VAR < A= (Vi + o AR TE < (Vr 4 gt TR
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It will be convenient to denote the last term of the above inequality by
A(ay,), that is,
Alan) = (Vi 1 laa| ) TE.
Then (3) implies that

lzo — 21|+ |21 — 2z2] + -+ |2p=1 — 2n

< 2v/nfy
< 2v/nag

< 2A(ay,).
Consequently, we have

(5) lzi| < lzo] + |20 — 21| + -+ + |zj-1 — =5
g+ af + 24(ay)

N

< 3A<an)+%A(an> G=01,.n—1),

and

(6) |z —zol+lzo—z|+ |21 — 22+ F [2na2 - Zn]
< 2|+ |zol + |20 — 21 + |21 = 22| + -+ |2u2 — 2]
1 ,

—A(ay,).
N

Now assume that there is a positive constant B and an infinite set
E of positive integers such that for each n € E there is a nonreal zero

1 .

zn = an+18y of fM(z) such that |o,| < Bn%. Since we have assumed
that p < 2(1 — k), the set

<z + 5A(ayn) +

{n—%A(an) :n € E}

is bounded above, and hence (2), (5) and (6) imply that there is a
positive constant B; such that

@ el 2EI) (50" (es1ne )

n!
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For each € > 0 let A, be the positive real number such that
epAP (A — By) = 1.
Then it is easy to see that

(8) lim eA?~1e = Q.

e—0

Since M(r; f) = o(:e"p) for all € > 0, Gontcharoff’s second estimate
gives

M(Byn¥; f)

n—oc n!

im Bin7 ( ) < BiepAPTletN (e > 0),

and hence (7) and (8) imply that f(z) = 0 for |z| < 1. From this con-
tradiction, we see that for each positive constant B there is a positive
constant n; such that for all n > n; the nonreal zeros of f{™)(z) are
distributed in the region |Re z| > Bn*. Now the following observation
gives the desired result: Since the nonreal zeros of f(z) are distributed
in the region R(k), Jensen's theorem and the inequality (c) of the
lemma imply that for all n = 1,2, -+, the nonreal zeros of f(™(z) are
distributed in the half plane

Rez > m>in(x — /nzk).
>0
On the other hand, the assumption p < 2(1 — k) implies that

m;n(x—ﬁxk):()(n%) as n—oc. [
z >0

Proof of Theorem 2. If f(z) has only a finite number of nonreal
zeros, then our assertion follows from Theorem 1 (the Pélya-Wiman
conjecture) of [K1] and Theorem I of section 1. So assume that f(z)
has infinitely many nonreal zeros, and denote the distinct nonreal zeros
of f(z) by a; £:8;, j = 1,2,---. We can assume, without loss of
generality, that 0 < oy < ay < ---.
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We will show that for each positive integer K, f(z) has at least
K critical points. Let K be an arbitrary positive integer. It will be
convenient to denote the exponent £ + k — 1 by —g, so that Z] locj +
18177 < oc, p+2¢+2k=2and 0 < ¢ < 1. Since 0 < k¥ < 1 and

13;] < a;‘ for j =1.2,---, we have }_, a7 < oo, and hence
T Y5417 45

(9) lim Ll_q—] = oc.
TGy

Since ¢ > 0, we have p < 2(1 — k) < 2, and hence we can apply
Theorem 1 to obtain a positive integer n; such that for all n > ny,
f™(z) has only real zeros in the region Rez < n#. From (9), we can
find a positive integer J such that

(10) K <

(11) 2 Za'IJ:i <@y —ay, and
1

(12) n]” <(l/.]+1.

From (12). we have 1 < &/, and hence there is a positive integer N
such that

(13) o < N <2,

Since p+ 2¢ + 2k = 2, (11) and (13) imply that
(14)
, ) - - £ _
1841+ 18101 VN < 20k, VN < 2v3a27 = 2v2d 7% <ayy —ay.

From Jensen’s theorem and the inequality (c) of the lemma, we
obtain

JF™) ¢ U{z |aj —18j[vn+1<Rez <a;+|i|vVn+1}
J
n=0,1,2--).
Hence (14) implies that there is a positive real number B such that

(15) B¢ J(HUITFHU-- uTFNY), and

oy < B <« Q4.
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From (16), f(z) has at least 2J nonreal zeros in the region Re z < B.
From (12) and (13), we have N > n;, and hence f¥)(z) has only real
zeros in the region Rez < N7. Since B < Xy < Nlﬂ, {15) and
Theorem II of section 1 imply that the sum of the multiplicities of the
critical zeros of f'(z), f"(z),-- . f™)(z) in the interval (—oo, B] is at
least J. Since K < J. f(z) has at least I critical points in the interval

(-.B]. C
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