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Abstract. Motivated mainly by certain interesting recent extensions of the generalized

hypergeometric function [30] and the second Appell function [6], we introduce here the

incomplete Lauricella functions γ
(n)
A and Γ

(n)
A of n variables. We then systematically in-

vestigate several properties of each of these incomplete Lauricella functions including, for

example, their various integral representations, finite summation formulas, transformation

and derivative formulas, and so on. We provide relevant connections of some of the special

cases of the main results presented here with known identities. Several potential areas of

application of the incomplete hypergeometric functions in one and more variables are also

pointed out.

*Corresponding Author.
Received June 7, 2016; accepted December 6, 2016.
2010 Mathematics Subject Classification: Primary 33B15, 33B20, 33C05, 33C15, 33C20;
Secondary 33B99, 33C99, 60B99.
Key words and phrases: Gamma functions; incomplete gamma functions; Pochhammer
symbol; incomplete Pochhammer symbols; incomplete generalized hypergeometric func-
tions; Lauricella functions; Appell functions; Laguerre polynomials; Bessel and modified
Bessel functions; incomplete second Appell functions; incomplete Lauricella functions of
several variables; Marcum q- and Q-functions.

19



20 J. Choi, R. K. Parmar and H. M. Srivastava

1. Introduction, Definitions and Preliminaries

The familiar incomplete Gamma functions γ(s, x) and Γ(s, x) defined by

(1.1) γ(s, x) :=

∫ x

0

ts−1 e−t dt
(
ℜ(s) > 0; x = 0

)
and

(1.2) Γ(s, x) :=

∫ ∞

x

ts−1 e−t dt
(
x = 0; ℜ(s) > 0 when x = 0

)
,

respectively, satisfy the following decomposition formula:

(1.3) γ(s, x) + Γ(s, x) := Γ(s)
(
ℜ(s) > 0

)
.

Each of these functions plays an important rôle in the study of the analytic solutions
of a variety of problems in diverse areas of science and engineering (see, e.g., [1, 2,
8, 9, 10, 14, 16, 17, 20, 23, 33, 34, 35, 37, 38]).

Throughout this paper, N, Z− and C denote the sets of positive integers, nega-
tive integers and complex numbers, respectively,

N0 := N ∪ {0} and Z−
0 := Z− ∪ {0} .

Moreover, the parameter x = 0 used above in (1.1) and (1.2) and elsewhere in this
paper is independent of ℜ(z) of the complex number z ∈ C.

Recently, Srivastava et al. [30] introduced and studied in a rather systematic
manner the following two families of generalized incomplete hypergeometric func-
tions:

(1.4) pγq

[
(α1, x), α2, · · · , αp;

β1, · · · , βq;
z

]
=

∞∑
n=0

(α1;x)n(α2)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!

and

(1.5) pΓq

[
(α1, x), α2, · · · , αp;

β1, · · · , βq;
z

]
=

∞∑
n=0

[α1;x]n(α2)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!
,

where, in terms of the incomplete Gamma functions γ(s, x) and Γ(s, x) defined
by (1.1) and (1.2), respectively, the incomplete Pochhammer symbols (λ;x)ν and
[λ;x]ν (λ; ν ∈ C; x = 0) are defined as follows:

(1.6) (λ;x)ν :=
γ(λ+ ν, x)

Γ(λ)
(λ, ν ∈ C; x = 0)

and

(1.7) [λ;x]ν :=
Γ(λ+ ν, x)

Γ(λ)
(λ, ν ∈ C; x = 0),
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so that, obviously, these incomplete Pochhammer symbols (λ;x)ν and [λ;x]ν satisfy
the following decomposition relation:

(1.8) (λ;x)ν + [λ;x]ν := (λ)ν (λ; ν ∈ C; x = 0).

Here, and in what follows, (λ)ν (λ, ν ∈ C) denotes the Pochhammer symbol (or
the shifted factorial) which is defined (in general) by

(1.9) (λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

 1 (ν = 0; λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),

it being understood conventionally that (0)0 := 1 and assumed tacitly that the Γ-
quotient exists (see, for details, [35, p. 21 et seq.]; see also [25]), N being (as above)
the set of positive integers.

As already observed by Srivastava et al. [30], the definitions (1.4) and (1.5)
readily yield the following decomposition formula:

pγq

[
(α1, x), α2, . . . , αp;

β1, . . . , βq;
z

]
+ pΓq

[
(α1, x), α2, . . . , αp;

β1, · · · , βq;
z

]
= pFq

[
α1, α2, . . . , αp;

β1, . . . , βq;
z

]
(1.10)

for the familiar generalized hypergeometric function pFq.
In a sequel to the aforementioned work by Srivastava et al. [30], Çetinkaya

[6] introduced the incomplete second Appell hypergeometric functions γ2 and Γ2 in
two variables and investigated their various properties including integral representa-
tions. Motivated essentially by the demonstrated potential for applications of these
incomplete hypergeometric functions pγq and pΓq, and the incomplete second
Appell hypergeometric functions γ2 and Γ2 in many diverse areas of mathematical,
physical, engineering and statistical sciences (see, for details, [6, 30] and the refer-
ences cited therein), here, we aim here at systematically investigating the family

of the incomplete Lauricella’s functions γ
(n)
A and Γ

(n)
A of n variables. For each

of these incomplete multivariable hypergeometric functions, we derive various defi-
nite and semi-definite integral representations involving the Laguerre polynomials,
incomplete gamma functions, and the Bessel and modified Bessel functions. Some
transformation and summation formulas of the incomplete Lauricella functions are
also presented. We point out relevant connections of some of the special cases of the
main results derived here with known identities. Several potential areas of applica-
tion of the incomplete hypergeometric functions in one and more variables are also
indicated. For various other investigations involving generalizations of the hyperge-
ometric function pFq of p numerator and q denominator parameters, which were
motivated essentially by the pioneering work of Srivastava et al. [30], the interested
reader may be referred to several recent papers on the subject (see, for example,
[7, 11, 13, 18, 26, 27, 28, 29, 31, 32] and the references cited in each of these papers).
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2. The Incomplete Lauricella Functions γ
(n)
A and Γ

(n)
A in n Variables

In terms of the incomplete Pochhammer symbol (λ;x)ν and [λ;x]ν defined by
(1.6) and (1.7), we introduce the families of the incomplete Lauricella hypergeo-

metric functions γ
(n)
A and Γ

(n)
A of n variables as follows: For α, β1, . . . , βn ∈ C and

γ1, . . . , γn ∈ C \ Z−
0 , we have

γ
(n)
A [(α, x), β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn]

:=

∞∑
m1,...,mn=0

(α;x)m1+···+mn(β1)m1 · · · (βn)mn

(γ1)m1 · · · (γn)mn

xm1
1

m1!
· · · x

mn
n

mn!
(2.1)

(x = 0; |x1|+ · · ·+ |xn| < 1 when x = 0)

and

Γ
(n)
A [(α, x), β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn]

=

∞∑
m1,...,mn=0

[α;x]m1+···+mn(β1)m1 · · · (βn)mn

(γ1)m1 · · · (γn)mn

xm1
1

m1!
· · · x

mn
n

mn!
(2.2)

(x = 0; |x1|+ · · ·+ |xn| < 1 when x = 0).

In view of (1.8), these families of incomplete Lauricella functions satisfy the
following decomposition formula:

γ
(n)
A [(α, x), β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn]

+ Γ
(n)
A [(α, x), β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn](2.3)

= F
(n)
A [α, β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn],

where F
(n)
A is the familiar Lauricella function of n variables [35, 36]. It is noted in

passing that, in view of the decomposition formula (2.3), it is sufficient to discuss

the properties and characteristics of the incomplete Lauricella function Γ
(n)
A .

Theorem 2.1. The incomplete Lauricella functions γ
(n)
A and Γ

(n)
A satisfy the fol-

lowing partial differential equation:

xj(1− xj)
∂2u

∂x2j
− xj

n∑
k=1 (k ̸=j)

xk
∂2u

∂xk∂xj
+ [γj − (α+ βj + 1)xj ]

∂u

∂xj

− βj

n∑
k=1 (k ̸=j)

xk
∂u

∂xk
− αβju = 0 (j = 1, . . . , n),(2.4)

where

u = u(x1, . . . , xn) := γ
(n)
A [(α, x), β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn]

+ Γ
(n)
A [(α, x), β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn].
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Proof. In light of the decomposition formula (2.3), it is easy to derive (2.4), since the

n-variable Lauricella function F
(n)
A satisfies the same system of partial differential

equations as in (2.4).

Remark 2.2. The special cases of (2.1) and (2.2) when n = 2 are easily seen
to correspond to the following known families of the incomplete second Appell
hypergeometric functions in two variables [6]:

(2.5) γ
(2)
A = γ2[(a, x), b1, b2; c1, c2;x1, x2] and Γ

(2)
A = Γ2[(a, x), b1, b2; c1, c2;x1, x2],

respectively. Also, the special cases of (2.1) and (2.2) when n = 1 correspond to
the following known families of the incomplete Gauss hypergeometric functions in
one variable [30]:

(2.6) γ
(1)
A = 2γ1[(a, x), b1; c1;x1] and Γ

(1)
A = 2Γ1[(a, x), b1; c1;x1],

respectively.

3. Integral Representations of the Incomplete Lauricella Function Γ
(n)
A

In this section, we present certain integral representations of the incomplete

Lauricella function Γ
(n)
A by applying (1.2) and (1.7). We also obtain some integral

representations involving the Laguerre polynomials, the incomplete gamma func-
tions, and the Bessel and modified Bessel functions.

Theorem 3.1. The following integral representation for Γ
(n)
A in (2.2) holds true:

Γ
(n)
A [(α, x), β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn]

=
1

Γ(α)

∫ ∞

x

e−t tα−1
1F1

 β1;

γ1;
x1t

 · · · 1F1

 βn;

γn;
xnt

 dt(3.1)

(
x = 0; ℜ(x1 + · · ·+ xn) < 1; ℜ(α) > 0 when x = 0

)
.

Proof. Using the definition of the incomplete Pochhammer symbol [α;x]m1+···+mn

in (2.2) and considering the integral representation resulting from (1.2) and (1.7),
we are led to the desired result (3.1) asserted by Theorem 3.1.

Theorem 3.2. The following n-tuple integral representation for Γ
(n)
A in (2.2) holds

true:
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Γ
(n)
A [(α, x), β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn] =

1

B(β1, γ1 − β1) · · ·B(βn, γn − βn)

·
∫ 1

0

· · ·
∫ 1

0

tβ1−1
1 · · · tβn−1

n (1− t1)
γ1−β1−1 · · · (1− tn)

γn−βn−1

· 1Γ0

[
(α, x); ;x1t1 + · · ·+ xntn

]
dt1 · · · dtn

(3.2)

(
ℜ(γj) > ℜ(βj) > 0 (j = 1, . . . , n); x = 0

)
.

Proof. Upon considering the following elementary identity involving the Beta func-
tion B(α, β):

(β)ν
(γ)ν

=
B(β + ν, γ − β)

B(β, γ − β)
=

1

B(β, γ − β)

∫ 1

0

tβ+ν−1 (1− t)γ−β−1 dt

(
ℜ(γ) > ℜ(β) > max{0,−ℜ(ν)}

)
in (2.2) and using the elementary series identity (5.6), if we apply the definition
(1.5), we get the desired multiple integral representation (3.2) asserted by Theorem
3.2.

Theorem 3.3. The following (n+1)-tuple integral representation for Γ
(n)
A in (2.2)

holds true:

Γ
(n)
A [(α, x), β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn] =

1

Γ(α)Γ(β1) · · ·Γ(βn)

·
∫ ∞

x

∫ ∞

0

· · ·
∫ ∞

0

e−s−t1− ··· −tn sα−1 tβ1−1
1 · · · tβn−1

n

· 0F1( ; γ1;x1st1) · · · 0F1( ; γn;xnstn) ds dt1 · · · dtn(3.3) (
x = 0; min{ℜ(α),ℜ(β1), . . . ,ℜ(βn)} > 0 when x = 0

)
.

Proof. Using the incomplete Pochhammer symbol [α;x]m1+···+mn and the classical
Pochhammer symbols (β1)m1 , . . . , (βn)mn in the definition (2.2) by considering the
integral representation resulting from (1.2) and (1.7), we are led to the desired
(n+ 1)-tuple integral representation (3.3) asserted by Theorem 3.3.

Remark 3.4. The Laguerre polynomial L
(α)
n (x) of order (index) α and degree n

in x, the incomplete gamma function γ(k, x), the Bessel function Jν(z) and the
modified Bessel function Iν(z) are expressible in terms of hypergeometric functions
as follows (see, e.g., [21]; see also [5, 9, 12, 14, 17, 38, 39]):

(3.4) L(α)
n (x) =

(α+ 1)n
n!

1F1(−n;α+ 1;x),
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(3.5) 1F1(κ;κ+ 1;−x) = κx−κ γ(κ, x),

(3.6) Jν(z) =
( z2 )

ν

Γ(ν + 1)
0F1

(
; ν + 1;−1

4
z2
)

(ν ∈ C \ Z−)

and

(3.7) Iν(z) =
( z2 )

ν

Γ(ν + 1)
0F1

(
; ν + 1;

1

4
z2
)

(ν ∈ C \ Z−).

Now, by applying the relationships (3.4) and (3.5) to (3.1) and (3.6) and (3.7) to
(3.3), we can deduce certain interesting integral representations for the incomplete
Lauricella hypergeometric function in (2.2), which are asserted by Corollaries 3.5
and 3.6 below. We state here the resulting integral representations without proof.

Corollary 3.5. Each of the following integral representations holds true:

Γ
(n)
A [(α, x),−m1, . . . ,−mn;β1 + 1, . . . , βn + 1;x1, . . . , xn]

=
m1! · · ·mn!

(β1 + 1)m1 · · · (βn + 1)mnΓ(α)

∫ ∞

x

e−t tα−1 L(β1)
m1

(x1t) · · ·L(βn)
mn

(xnt) dt(3.8)

and

Γ
(n)
A [(α, x), β1, . . . , βn;β1 + 1, . . . , βn + 1;−x1, . . . ,−xn]

=
β1 · · ·βnx−β1

1 · · ·x−βn
n

Γ(α)

∫ ∞

x

e−t tα−β1−···−βn−1 γ(β1, x1t) · · · γ(βn, xnt) dt(3.9)

provided that the integrals involved are convergent.

Corollary 3.6. Each of the following (n + 1)-tuple integral representations holds
true:

Γ
(n)
A [(α, x), β1, . . . , βn; γ1 + 1, . . . , γn + 1;−x1, . . . ,−xn]

=
Γ(γ1 + 1) · · ·Γ(γn + 1)x

− γ1
2

1 · · ·x−
γn
2

n

Γ(α)Γ(β1) · · ·Γ(βn)

·
∫ ∞

x

∫ ∞

0

· · ·
∫ ∞

0

e−s−t1−···−tn sα−
γ1
2 −···− γn

2 −1 t
β1− γ1

2 −1
1 · · · tβn− γn

2 −1
1

· Jγ1

(
2
√
x1st1

)
· · · Jγn

(
2
√
xnstn

)
ds dt1 · · · dtn(3.10)

and

Γ
(n)
A [(α, x), β1, . . . , βn; γ1 + 1, . . . , γn + 1;x1, . . . , xn]

=
Γ(γ1 + 1) · · ·Γ(γn + 1)x

− γ1
2

1 · · ·x−
γn
2

n

Γ(α)Γ(β1) · · ·Γ(βn)

·
∫ ∞

x

∫ ∞

0

· · ·
∫ ∞

0

e−s−t1−···−tn sα−
γ1
2 −···− γn

2 −1 t
β1− γ1

2 −1
1 · · · tβn− γn

2 −1
1

· Iγ1

(
2
√
x1st1

)
· · · Iγn

(
2
√
xnstn

)
ds dt1 · · · dtn,(3.11)
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provided that the integrals involved are convergent.

4. A Derivative Formula

Differentiating both sides of (2.2) with respect to x1, . . . , xn partiallym1, . . . , mn

times, respectively, we obtain a derivative formula for the incomplete Lauricella hy-

pergeometric function Γ
(n)
A given in the following theorem.

Theorem 4.1. The following derivative formula for Γ
(n)
A holds true:

∂m1+···+mn

∂xm1
1 · · · ∂xmn

n

{
Γ
(n)
A [(α, x), β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn]

}
=

(α)m1+···+mn(β1)m1 · · · (βn)mn

(γ1)m1 · · · (γn)mn

· Γ(n)
A [(α+m1 + · · ·+mn, x),

β1 +m1, . . . , βn +mn; γ1 +m1, . . . , γn +mn;x1, . . . , xn],(4.1)

provided that each member of the assertion (4.1) exists.

5. A Set of Transformation Formulas

Here we give two transformation formulas for the incomplete Lauricella hyper-

geometric function Γ
(n)
A of n variables.

Theorem 5.1. Each of the following transformation formulas holds true:

Γ
(n)
A [(α, x), β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn] = (1− x1)

−α

· Γ(n)
A

[(
α, x(1− x1)

)
, γ1 − β1, β2, . . . , βn; γ1, . . . , γn;

x1
x1 − 1

,
x2

1− x1
, · · · , xn

1− x1

]
(5.1)

and

Γ
(n)
A [(α, x), β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn] = (1− x1 − · · · − xn)

−α

· Γ(n)
A

[(
α, x(1− x1 − · · · − xn)

)
, γ1 − β1, . . . , γn − βn; γ1, . . . , γn;

x1
x1 + · · ·+ xn − 1

, · · · , xn
x1 + · · ·+ xn − 1

]
.(5.2)

Proof. If we first apply Kummer’s transformation formula (see, e.g., [21, p. 125,
Eq. (2)]):

(5.3) 1F1(α;β; z) = ez 1F1(β − α;β;−z)



The Incomplete Lauricella Functions of Several Variables 27

to (3.1) and then set

τ = (1− x1)t and dτ = (1− x1)dt

in the resulting integral, we get the first transformation formula (5.1). A similar
argument will establish the second transformation formula (5.2).

Corollary 5.2. The following expansion formula holds true:

1Γ
(n)
0 [
(
α, x

)
; ; z] = (1− z)−α

[
α;x(1− z)

]
0

(5.4)

for the incomplete hypergeometric function 1Γ0 defined by (1.5) for p− 1 = q = 0,
[λ;x]0 being the incomplete Pochhammer symbol given by (1.6) for ν = 0.

Proof. Upon setting γj = βj (j = 1, . . . , n) in (5.2), we find that

∞∑
m1,...,mn=0

[α;x]m1+···+mn

xm1
1

m1!
· · · x

mn
n

mn!

= (1− x1 − · · · − xn)
−α [

α;x (1− x1 − . . .− xn)
]
0
,(5.5)

which, in view of the elementary series identity [36, p. 52, Eq. 1.6(3)]:

(5.6)

∞∑
m1,...,mn=0

Ω (m1 + · · ·+mn)
xm1
1

m1!
· · · x

mn
n

mn!
=

∞∑
m=0

Ω(m)
(x1 + · · ·+ xm)

m

m!

can easily be simplified to yield the assertion (5.4) of Corollary 5.2 when we put
x1 + · · ·+ xn = z.

Remark 5.3. Since

(λ;x)0

∣∣∣∣
x=0

= [λ;x]0

∣∣∣∣
x=0

= 1,

in its special case when x = 0, Corollary 5.2 would reduce immediately to the
binomial expansion given by

(5.7) 1F0(α; ; z) =
∞∑

n=0

(α)n
zn

n!
= (1− z)−α (|z| < 1; α ∈ C).

Remark 5.4. In light of the expansion formula (5.4) asserted by Corollary 5.2,

n-tuple integral representation for Γ
(n)
A in Theorem 3.2 can be rewritten as follows:
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holds true:

Γ
(n)
A [(α, x), β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn] =

1

B(β1, γ1 − β1) · · ·B(βn, γn − βn)

·
∫ 1

0

· · ·
∫ 1

0

tβ1−1
1 · · · tβn−1

n (1− t1)
γ1−β1−1 · · · (1− tn)

γn−βn−1

· (1− x1t1 − · · · − xntn)
−α [

α;x (1− x1t1 − · · · − xntn)
]
0
dt1 · · · dtn

(5.8)

(
ℜ(γj) > ℜ(βj) > 0 (j = 1, . . . , n); x = 0

)
.

Finally, by applying the following known relationship of the complementary
error function erfc(z) with the incomplete gamma function Γ(s, x) (see, for example,
[36, p. 40, Eq. 1.3(28)]):

erfc(z) =
1√
π

Γ

(
1

2
, z2
)
,

a special case of Corollary 5.2 yields the following result:

(5.9) 1Γ0

[(
1

2
, x

)
; ; z

]
=

1√
1− z

erfc
(√

x(1− z)
)
.

6. Finite Sums Involving Γ
(n)
A

Here we consider some finite sum formulas associated with the incomplete Lau-

ricella function Γ
(n)
A .

Theorem 6.1. The following finite sum formula for Γ
(n)
A holds true:

m∑
k=0

Γ
(n)
A [(α, x),−k,−m+ k, β3, . . . , βn; 1, 1, γ3, . . . , γn;x1, . . . , xn]

= (m+ 1)Γ
(n−1)
A [(α, x),−m,β3, . . . , βn; 2, γ3, . . . , γn;x1 + x2, x3, . . . , xn](6.1) (

|x1|+ · · ·+ |xn| < 1; ℜ(α) > 0 when x = 0
)
.

Proof. We make use the integral representation (3.1) and the following well-known
identity for the Laguerre polynomials (see, e.g., [21, p. 209, Eq. (3)]):

(6.2)

m∑
k=0

L
(λ)
k (x)L

(µ)
m−k(y) = L(λ+µ+1)

m (x+ y)

for λ = µ = 0. Thus, in view of the 1F1 representation (3.4) for the Laguerre
polynomials, we get the desired finite sum formula (6.1) asserted by Theorem 6.1.
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Theorem 6.2. The following multiple finite sum formula for Γ
(n)
A holds true:

m1∑
k1=0

· · ·
ms∑

ks=0

Γ
(2s)
A [(α, x),−k1,−m1 + k1, . . . ,−ks,−ms + ks; 1, . . . , 1;x1, . . . , x2s]

= (m1 + 1) · · · (ms + 1)Γ
(s)
A [(α, x),−m1, . . . ,−ms; 2, . . . , 2;x1 + x2, . . . , x2s−1 + x2s]

(6.3)

(
|x1|+ · · ·+ |xn| < 1; ℜ(α) > 0 when x = 0

)
.

Proof. By iterating the method used in proving the finite summation formula (6.1),
which is based upon the identity (6.2) and the integral representation (3.1), the

1F1 representation (3.4) for the Laguerre polynomials yields the desired multiple
summation formula (6.3) asserted by Theorem 6.2. 2

Theorem 6.3. The following finite sum formula for Γ
(n)
A holds true:

m∑
k=0

(
λ+ k

k

)
Γ
(n)
A [(α, x),−k,−k, β3, . . . , βn;λ+ 1, λ+ 1, γ3, . . . , γn;x1, . . . , xn]

=
(λ+ 1)m+1

m!(α− 1)
(x1 − x2)

−1

· Γ(n)
A [(α− 1, x),−m,−m− 1, β3, . . . , βn;λ+ 1, λ+ 1, γ3, . . . , γn;x1, . . . , xn]

+ x1 
 x2

(
x = 0; α ̸= 1; ℜ(α) > 0 when x = 0

)
,

(6.4)

where x1 
 x2 indicates the presence of a second term that originates from the
first term by interchanging x1 and x2.

Proof. Applying the relationship (3.4) and the following known result (see, e.g., [21,
p. 206, Eq. (10)]):

m∑
k=0

k!

(λ+ 1)k
L
(λ)
k (x)L

(λ)
k (y)

=
(m+ 1)!

(λ+ 1)m
(x− y)−1

[
L(λ)
m (x)L

(λ)
m+1(y)− L

(λ)
m+1(x)L

(λ)
m (y)

]
(6.5)

to the integral representation (3.1), we get the desired finite sum formula (6.5)
asserted by Theorem 6.3. 2
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Remark 6.4. By suitably iterating the above process, we obtain

m1∑
k1=0

m2∑
k2=0

m3∑
k3=0

(
a1 + k1
k1

)(
a2 + k2
k2

)(
a3 + k3
k3

)
· Γ(n)

A

[
(α, x),−k1,−k1,−k2,−k2,−k3,−k3, β7, . . . , βn;

a1 + 1, a1 + 1, a2 + 1, a2 + 1, a3 + 1, a3 + 1, γ7, . . . , γn;x1, . . . , xn
]

=
(a1 + 1)m1+1(a2 + 1)m2+1(a3 + 1)m3+1

m1! m2! m3!(α− 1)(α− 2)(α− 3)
(x1 − x2)

−1
[
(x3 − x4)

−1
{
(x5 − x6)

−1

· Γ(n)
A

[
(α− 3, x),−m1,−m1 − 1,−m2,−m2 − 1,−m3,−m3 − 1, β7, . . . , βn;

a1 + 1, a1 + 1, a2 + 1, a2 + 1, a3 + 1, a3 + 1, γ7, . . . , γn;x1, . . . , xn
]

+ x5 
 x6

}
+ x3 
 x4

]
+ x1 
 x2,

(6.6)

where the right-hand side obviously has 23 terms. Similarly, we can derive a more

general multiple finite summation formula for Γ
(n)
A in the following form:

m1∑
k1=0

· · ·
ms∑

ks=0

(
a1 + k1
k1

)
· · ·
(
as + ks
ks

)
· Γ(2s)

A [(α, x),−k1,−k1, . . . ,−ks,

− ks; a1 + 1, a1 + 1, . . . , as + 1, as + 1;x1, · · · , x2s],(6.7)

whose detailed expression is being left as an exercise for the interested reader.

The special cases of the identities in this section when x = 0 are seen to re-
duce to the corresponding known results due to Padmanabham and Srivastava [19].
Moreover, the special cases of the results in this section when x = 0 and n = 2 can
be seen to yield the known identities due to Srivastava [24].

7. The Incomplete Lauricella Function Γ
(2s)
A as an s-Fold Sum

By interpreting the first two 1F1 functions occurring on the right-hand side of
(3.1) as a Cauchy product, it is easily seen that the incomplete Lauricella function

Γ
(n)
A can be expressed as a series whose terms are composed of 3F2 and Γ

(n−2)
A as

follows:

Γ
(n)
A [(α, x), β1, . . . , βn; γ1, . . . , γn;x1, . . . , xn]

=

∞∑
m=0

(α)m(β1)m
(γ1)m

xm1
m!

3F2

 −m, 1− γ1 −m,β2;

1− β1 −m, γ2;
− x2
x1


· Γ(n−2)

A [(α+m,x), β3, . . . , βn; γ3, . . . , γn;x3, . . . , xn](7.1)

(x = 0; |x1|+ · · ·+ |xn| < 1 when x = 0).
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More generally, by iterating the above process s times, this last sum formula (7.1)

would finally express Γ
(2s)
A as a multiple series whose terms are s-tuple products of

the hypergeometric 3F2 functions:

Γ
(2s)
A [(α, x), β1, . . . , β2s; γ1, . . . , γ2s;x1, . . . , x2s] =

∞∑
m1,...,ms=0

[α;x]m1+···+ms

·
s∏

j=1

 (β2j−1)mj

(γ2j−1)mj

x
mj

2j−1

mj !
3F2

 −mj , 1− γ2j−1 −mj , β2j ;

1− β2j−1 −mj , γ2j ;
− x2j
x2j−1

(7.2)

(x = 0; |x1|+ · · ·+ |x2s| < 1 when x = 0).

Remark 7.1. The special case of (7.1) when n = 2 can easily be rewritten in terms
of the incomplete Appell function Γ2. Also the special case of (7.1) when x = 0
yields a known result (see, e.g., [36, p. 181, Problem 38(ii)]). Furthermore, by set-
ting x = 0 in the results presented in this section, we are led to the corresponding
known identities due to Padmanabham and Srivastava [19].

8. Potential Areas of Application of Incomplete Hypergeometric Func-
tions

The familiar decomposition of the gamma function Γ(z) into the incomplete
gamma functions γ(s, x) and Γ(s, x) is well-recognized to be a non-trivial step as
the closed-form solution of a considerably large number of problems in (for exam-
ple) applied mathematics, astrophysics, nuclear and molecular physics, statistics
and engineering, transport theory and fluid flow, diffraction and plasma wave prob-
lems, number theory and random walks, Lorentz-Doppler line broadening, design of
particle acceleration, and so on, can be expressed in terms of the incomplete gamma
functions γ(s, x) and Γ(s, x) defined by (1.1) and (1.2), respectively.

In their pioneering work, Srivastava et al. [30] showed that the generalized
incomplete hypergeometric functions

pγq (p, q ∈ N0) and pΓq (p, q ∈ N0)

are useful in engineering and applied sciences. In particular, they applied these gen-
eralized incomplete hypergeometric functions in such diverse areas as (for example)
communication theory, probability theory and groundwater pumping modelling.
The generalized Marcum q- and Q-functions given, in terms of the modified Bessel
function Iν(z) in (3.7), by

(8.1) qM (α, β) :=
1

αM−1

∫ β

0

tM e−
1
2 (t

2+α2) IM−1(αt)dt
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and

(8.2) QM (α, β) :=
1

αM−1

∫ ∞

β

tM e−
1
2 (t

2+α2) IM−1(αt)dt,

respectively, arise in performance analysis of several types of communications (see,
for details and also for citations of related earlier works, [30]). Their special case
when M = 1 were introduced initially by Marcum [15] during the study of the
statistical theory of target detection by pulsed radar. Annamalai and Tellambura
[3] studied the Cauchy-Schwarz bounds on these functions and discussed their ap-
plications in wireless communications. Simon and Alouini (see [22]) applied these
functions in the unified study of digital communication over fading channels. As a
matter of fact, the generalized Marcum functions in (8.1) and (8.2) are very special
cases of the generalized incomplete hypergeometric functions

pγq (p, q ∈ N0) and pΓq (p, q ∈ N0)

as specified below:

(8.3) qM (
√
2ω,

√
2x) = e−ω

1γ1

 (M,x);

M ;
ω


and

(8.4) QM (
√
2ω,

√
2x) = e−ω

1Γ1

 (M,x);

M ;
ω

 ,
which, in light of (1.10), yield the following decomposition formula:

(8.5) qM (α, β) +QM (α, β) = 1

satisfied by the generalized Marcum functions defined above by (8.1) and (8.2).
In view of the above-mentioned developments, therefore, it is quite natural to

expect that the incomplete hypergeometric functions in two and more variables,
too, will provide closed-form solutions to a variety of problems in at least some of
the many diverse areas of science and engineering. For example, the various in-
tegral formulas and integral representations (which are given in this paper) would
substantially aid in the evaluation of single, double and multiple definite integrals
involving simpler complete and incomplete hypergeometric functions in one and
more variables. In particular, the Eulerian type integral representations may be
interpreted as the familiar Riemann-Liouville fractional integrals. These integrals,
together with the Laplace transform formulas, are potentially useful in solving some
families of fractional differential equations (see, for details, [10]). Multivariable hy-
pergeometric functions and their incomplete counterparts are, of course, useful also
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in solving systems of partial differential equations.

9. Concluding Remarks and Observations

In our present investigation, with the help of the incomplete Pochhammer sym-
bols (λ;x)ν and [λ;x]ν , we have introduced the incomplete Lauricellla functions

γ
(n)
A and Γ

(n)
A of n variables, whose special cases when n = 1 and n = 2 reduce to

the incomplete Gauss hypergeometric functions and the incomplete second Appell
functions of two variables (see [30] and [6]), respectively. We have investigated their
such diverse properties as integral representations and finite summation formulas.
The special cases of the results obtained in this paper when x = 0 would reduce
to the corresponding known results for the Appell and Lauricellla functions (see,
for details, [4, 19, 24, 35, 36]). We have provided relevant connections of some of
the special cases of the main results derived here with known identities. Several
potential areas of application of these incomplete hypergeometric functions in one,
two and more variables have also been indicated.
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