The Incomplete Lauricella Functions of Several Variables and Associated Properties and Formulas

Junesang Choi*
Department of Mathematics, Dongguk University, Gyeongju 38066, Republic of Korea
$e-m a i l: j u n e s a n g @ m a i l . d o n g g u k . a c . k r$
Rakesh K. Parmar
Department of Mathematics, Government College of Engineering and Technology, Bikaner 334004, Rajasthan State, India
e-mail : rakeshparmar27@gmail.com
H. M. Srivastava
Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada, and
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, Republic of China
e-mail: harimsri@math.uvic.ca

Abstract. Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [30] and the second Appell function [6], we introduce here the incomplete Lauricella functions $\gamma_{A}^{(n)}$ and $\Gamma_{A}^{(n)}$ of n variables. We then systematically investigate several properties of each of these incomplete Lauricella functions including, for example, their various integral representations, finite summation formulas, transformation and derivative formulas, and so on. We provide relevant connections of some of the special cases of the main results presented here with known identities. Several potential areas of application of the incomplete hypergeometric functions in one and more variables are also pointed out.

[^0]
1. Introduction, Definitions and Preliminaries

The familiar incomplete Gamma functions $\gamma(s, x)$ and $\Gamma(s, x)$ defined by

$$
\begin{equation*}
\gamma(s, x):=\int_{0}^{x} t^{s-1} e^{-t} d t \quad(\Re(s)>0 ; x \geqq 0) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma(s, x):=\int_{x}^{\infty} t^{s-1} e^{-t} d t \quad(x \geqq 0 ; \Re(s)>0 \quad \text { when } \quad x=0) \tag{1.2}
\end{equation*}
$$

respectively, satisfy the following decomposition formula:

$$
\begin{equation*}
\gamma(s, x)+\Gamma(s, x):=\Gamma(s) \quad(\Re(s)>0) \tag{1.3}
\end{equation*}
$$

Each of these functions plays an important rôle in the study of the analytic solutions of a variety of problems in diverse areas of science and engineering (see, e.g., [1, 2, $8,9,10,14,16,17,20,23,33,34,35,37,38])$.

Throughout this paper, $\mathbb{N}, \mathbb{Z}^{-}$and \mathbb{C} denote the sets of positive integers, negative integers and complex numbers, respectively,

$$
\mathbb{N}_{0}:=\mathbb{N} \cup\{0\} \quad \text { and } \quad \mathbb{Z}_{0}^{-}:=\mathbb{Z}^{-} \cup\{0\}
$$

Moreover, the parameter $x \geqq 0$ used above in (1.1) and (1.2) and elsewhere in this paper is independent of $\Re(z)$ of the complex number $z \in \mathbb{C}$.

Recently, Srivastava et al. [30] introduced and studied in a rather systematic manner the following two families of generalized incomplete hypergeometric functions:

$$
{ }_{p} \gamma_{q}\left[\begin{array}{r}
\left(\alpha_{1}, x\right), \alpha_{2}, \cdots, \alpha_{p} ; \tag{1.4}\\
\beta_{1}, \cdots, \beta_{q} ;
\end{array}\right]=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1} ; x\right)_{n}\left(\alpha_{2}\right)_{n} \cdots\left(\alpha_{p}\right)_{n}}{\left(\beta_{1}\right)_{n} \cdots\left(\beta_{q}\right)_{n}} \frac{z^{n}}{n!}
$$

and

$$
{ }_{p} \Gamma_{q}\left[\begin{array}{r}
\left(\alpha_{1}, x\right), \alpha_{2}, \cdots, \alpha_{p} ; \tag{1.5}\\
\beta_{1}, \cdots, \beta_{q} ;
\end{array}\right]=\sum_{n=0}^{\infty} \frac{\left[\alpha_{1} ; x\right]_{n}\left(\alpha_{2}\right)_{n} \cdots\left(\alpha_{p}\right)_{n}}{\left(\beta_{1}\right)_{n} \cdots\left(\beta_{q}\right)_{n}} \frac{z^{n}}{n!},
$$

where, in terms of the incomplete Gamma functions $\gamma(s, x)$ and $\Gamma(s, x)$ defined by (1.1) and (1.2), respectively, the incomplete Pochhammer symbols $(\lambda ; x)_{\nu}$ and $[\lambda ; x]_{\nu}(\lambda ; \nu \in \mathbb{C} ; x \geqq 0)$ are defined as follows:

$$
\begin{equation*}
(\lambda ; x)_{\nu}:=\frac{\gamma(\lambda+\nu, x)}{\Gamma(\lambda)} \quad(\lambda, \nu \in \mathbb{C} ; x \geqq 0) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
[\lambda ; x]_{\nu}:=\frac{\Gamma(\lambda+\nu, x)}{\Gamma(\lambda)} \quad(\lambda, \nu \in \mathbb{C} ; x \geqq 0) \tag{1.7}
\end{equation*}
$$

so that, obviously, these incomplete Pochhammer symbols $(\lambda ; x)_{\nu}$ and $[\lambda ; x]_{\nu}$ satisfy the following decomposition relation:

$$
\begin{equation*}
(\lambda ; x)_{\nu}+[\lambda ; x]_{\nu}:=(\lambda)_{\nu} \quad(\lambda ; \nu \in \mathbb{C} ; x \geqq 0) \tag{1.8}
\end{equation*}
$$

Here, and in what follows, $(\lambda)_{\nu}(\lambda, \nu \in \mathbb{C})$ denotes the Pochhammer symbol (or the shifted factorial) which is defined (in general) by

$$
(\lambda)_{\nu}:=\frac{\Gamma(\lambda+\nu)}{\Gamma(\lambda)}= \begin{cases}1 & (\nu=0 ; \lambda \in \mathbb{C} \backslash\{0\}) \tag{1.9}\\ \lambda(\lambda+1) \cdots(\lambda+n-1) & (\nu=n \in \mathbb{N} ; \lambda \in \mathbb{C})\end{cases}
$$

it being understood conventionally that $(0)_{0}:=1$ and assumed tacitly that the Γ quotient exists (see, for details, [35, p. 21 et seq.]; see also [25]), \mathbb{N} being (as above) the set of positive integers.

As already observed by Srivastava et al. [30], the definitions (1.4) and (1.5) readily yield the following decomposition formula:

$$
\left.\left.\begin{array}{rl}
{ }_{p} \gamma_{q}\left[\begin{array}{r}
\left(\alpha_{1}, x\right), \alpha_{2}, \ldots, \alpha_{p} ; \\
\beta_{1}, \ldots, \beta_{q} ;
\end{array}\right]
\end{array}\right]+{ }_{p} \Gamma_{q}\left[\begin{array}{r}
\left(\alpha_{1}, x\right), \alpha_{2}, \ldots, \alpha_{p} ; \\
\beta_{1}, \ldots, \beta_{q} ;
\end{array}\right]\right] \text { } \begin{array}{r}
 \tag{1.10}\\
\\
={ }_{p} F_{q}\left[\begin{array}{r}
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p} ; \\
\beta_{1}, \ldots, \beta_{q} ;
\end{array}\right]
\end{array}
$$

for the familiar generalized hypergeometric function ${ }_{p} F_{q}$.
In a sequel to the aforementioned work by Srivastava et al. [30], Çetinkaya [6] introduced the incomplete second Appell hypergeometric functions γ_{2} and Γ_{2} in two variables and investigated their various properties including integral representations. Motivated essentially by the demonstrated potential for applications of these incomplete hypergeometric functions ${ }_{p} \gamma_{q}$ and ${ }_{p} \Gamma_{q}$, and the incomplete second Appell hypergeometric functions γ_{2} and Γ_{2} in many diverse areas of mathematical, physical, engineering and statistical sciences (see, for details, $[6,30]$ and the references cited therein), here, we aim here at systematically investigating the family of the incomplete Lauricella's functions $\gamma_{A}^{(n)}$ and $\Gamma_{A}^{(n)}$ of n variables. For each of these incomplete multivariable hypergeometric functions, we derive various definite and semi-definite integral representations involving the Laguerre polynomials, incomplete gamma functions, and the Bessel and modified Bessel functions. Some transformation and summation formulas of the incomplete Lauricella functions are also presented. We point out relevant connections of some of the special cases of the main results derived here with known identities. Several potential areas of application of the incomplete hypergeometric functions in one and more variables are also indicated. For various other investigations involving generalizations of the hypergeometric function ${ }_{p} F_{q}$ of p numerator and q denominator parameters, which were motivated essentially by the pioneering work of Srivastava et al. [30], the interested reader may be referred to several recent papers on the subject (see, for example, [$7,11,13,18,26,27,28,29,31,32]$ and the references cited in each of these papers).

2. The Incomplete Lauricella Functions $\gamma_{A}^{(n)}$ and $\Gamma_{A}^{(n)}$ in n Variables

In terms of the incomplete Pochhammer symbol $(\lambda ; x)_{\nu}$ and $[\lambda ; x]_{\nu}$ defined by (1.6) and (1.7), we introduce the families of the incomplete Lauricella hypergeometric functions $\gamma_{A}^{(n)}$ and $\Gamma_{A}^{(n)}$ of n variables as follows: For $\alpha, \beta_{1}, \ldots, \beta_{n} \in \mathbb{C}$ and $\gamma_{1}, \ldots, \gamma_{n} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}$, we have

$$
\begin{align*}
& \gamma_{A}^{(n)}\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right] \\
& :=\sum_{m_{1}, \ldots, m_{n}=0}^{\infty} \frac{(\alpha ; x)_{m_{1}+\cdots+m_{n}}\left(\beta_{1}\right)_{m_{1}} \cdots\left(\beta_{n}\right)_{m_{n}}}{\left(\gamma_{1}\right)_{m_{1}} \cdots\left(\gamma_{n}\right)_{m_{n}}} \frac{x_{1}^{m_{1}}}{m_{1}!} \cdots \frac{x_{n}^{m_{n}}}{m_{n}!} \tag{2.1}\\
& \quad\left(x \geqq 0 ;\left|x_{1}\right|+\cdots+\left|x_{n}\right|<1 \quad \text { when } \quad x=0\right)
\end{align*}
$$

and

$$
\begin{align*}
& \Gamma_{A}^{(n)}\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right] \\
& \quad=\sum_{m_{1}, \ldots, m_{n}=0}^{\infty} \frac{[\alpha ; x]_{m_{1}+\cdots+m_{n}}\left(\beta_{1}\right)_{m_{1}} \cdots\left(\beta_{n}\right)_{m_{n}}}{\left(\gamma_{1}\right)_{m_{1}} \cdots\left(\gamma_{n}\right)_{m_{n}}} \frac{x_{1}^{m_{1}}}{m_{1}!} \cdots \frac{x_{n}^{m_{n}}}{m_{n}!} \tag{2.2}\\
& \quad\left(x \geqq 0 ;\left|x_{1}\right|+\cdots+\left|x_{n}\right|<1 \quad \text { when } \quad x=0\right) .
\end{align*}
$$

In view of (1.8), these families of incomplete Lauricella functions satisfy the following decomposition formula:

$$
\begin{align*}
\gamma_{A}^{(n)} & {\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right] } \\
& +\Gamma_{A}^{(n)}\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right] \tag{2.3}\\
& =F_{A}^{(n)}\left[\alpha, \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right]
\end{align*}
$$

where $F_{A}^{(n)}$ is the familiar Lauricella function of n variables [35, 36]. It is noted in passing that, in view of the decomposition formula (2.3), it is sufficient to discuss the properties and characteristics of the incomplete Lauricella function $\Gamma_{A}^{(n)}$.
Theorem 2.1. The incomplete Lauricella functions $\gamma_{A}^{(n)}$ and $\Gamma_{A}^{(n)}$ satisfy the following partial differential equation:

$$
\begin{align*}
x_{j}\left(1-x_{j}\right) \frac{\partial^{2} u}{\partial x_{j}^{2}}-x_{j} & \sum_{k=1}^{n} x_{k} \frac{\partial^{2} u}{\partial x_{k} \partial x_{j}}+\left[\gamma_{j}-\left(\alpha+\beta_{j}+1\right) x_{j}\right] \frac{\partial u}{\partial x_{j}} \\
-\beta_{j} & \sum_{k=1}^{n} x_{k} \frac{\partial u}{\partial x_{k}}-\alpha \beta_{j} u=0 \quad(j=1, \ldots, n), \tag{2.4}
\end{align*}
$$

where

$$
\begin{aligned}
u=u\left(x_{1}, \ldots, x_{n}\right):= & \gamma_{A}^{(n)}\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right] \\
& +\Gamma_{A}^{(n)}\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right] .
\end{aligned}
$$

Proof. In light of the decomposition formula (2.3), it is easy to derive (2.4), since the n-variable Lauricella function $F_{A}^{(n)}$ satisfies the same system of partial differential equations as in (2.4).

Remark 2.2. The special cases of (2.1) and (2.2) when $n=2$ are easily seen to correspond to the following known families of the incomplete second Appell hypergeometric functions in two variables [6]:
(2.5) $\gamma_{A}^{(2)}=\gamma_{2}\left[(a, x), b_{1}, b_{2} ; c_{1}, c_{2} ; x_{1}, x_{2}\right]$ and $\Gamma_{A}^{(2)}=\Gamma_{2}\left[(a, x), b_{1}, b_{2} ; c_{1}, c_{2} ; x_{1}, x_{2}\right]$,
respectively. Also, the special cases of (2.1) and (2.2) when $n=1$ correspond to the following known families of the incomplete Gauss hypergeometric functions in one variable [30]:

$$
\begin{equation*}
\gamma_{A}^{(1)}={ }_{2} \gamma_{1}\left[(a, x), b_{1} ; c_{1} ; x_{1}\right] \text { and } \Gamma_{A}^{(1)}={ }_{2} \Gamma_{1}\left[(a, x), b_{1} ; c_{1} ; x_{1}\right], \tag{2.6}
\end{equation*}
$$

respectively.

3. Integral Representations of the Incomplete Lauricella Function $\Gamma_{A}^{(n)}$

In this section, we present certain integral representations of the incomplete Lauricella function $\Gamma_{A}^{(n)}$ by applying (1.2) and (1.7). We also obtain some integral representations involving the Laguerre polynomials, the incomplete gamma functions, and the Bessel and modified Bessel functions.

Theorem 3.1. The following integral representation for $\Gamma_{A}^{(n)}$ in (2.2) holds true:

$$
\begin{align*}
& \Gamma_{A}^{(n)}\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right] \\
& \quad=\frac{1}{\Gamma(\alpha)} \int_{x}^{\infty} e^{-t} t^{\alpha-1}{ }_{1} F_{1}\left[\begin{array}{c}
\beta_{1} ; \\
\gamma_{1} ;
\end{array} x_{1} t\right] \cdots_{1} F_{1}\left[\begin{array}{c}
\beta_{n} ; \\
\gamma_{n} ;
\end{array}\right] d t \tag{3.1}\\
& \quad\left(x \geqq 0 ; \Re\left(x_{1}+\cdots+x_{n}\right)<1 ; \Re(\alpha)>0 \quad \text { when } \quad x=0\right) .
\end{align*}
$$

Proof. Using the definition of the incomplete Pochhammer symbol $[\alpha ; x]_{m_{1}+\cdots+m_{n}}$ in (2.2) and considering the integral representation resulting from (1.2) and (1.7), we are led to the desired result (3.1) asserted by Theorem 3.1.

Theorem 3.2. The following n-tuple integral representation for $\Gamma_{A}^{(n)}$ in (2.2) holds true:

$$
\begin{aligned}
& \Gamma_{A}^{(n)}\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right]=\frac{1}{B\left(\beta_{1}, \gamma_{1}-\beta_{1}\right) \cdots B\left(\beta_{n}, \gamma_{n}-\beta_{n}\right)} \\
& \cdot \int_{0}^{1} \cdots \int_{0}^{1} t_{1}^{\beta_{1}-1} \cdots t_{n}^{\beta_{n}-1}\left(1-t_{1}\right)^{\gamma_{1}-\beta_{1}-1} \cdots\left(1-t_{n}\right)^{\gamma_{n}-\beta_{n}-1} \\
& \cdot{ }_{1} \Gamma_{0}\left[(\alpha, x) ;-; x_{1} t_{1}+\cdots+x_{n} t_{n}\right] d t_{1} \cdots d t_{n} \\
& \\
& \left(\Re\left(\gamma_{j}\right)>\Re\left(\beta_{j}\right)>0(j=1, \ldots, n) ; x \geqq 0\right) .
\end{aligned}
$$

Proof. Upon considering the following elementary identity involving the Beta function $B(\alpha, \beta)$:

$$
\begin{gathered}
\frac{(\beta)_{\nu}}{(\gamma)_{\nu}}=\frac{B(\beta+\nu, \gamma-\beta)}{B(\beta, \gamma-\beta)}=\frac{1}{B(\beta, \gamma-\beta)} \int_{0}^{1} t^{\beta+\nu-1}(1-t)^{\gamma-\beta-1} d t \\
(\Re(\gamma)>\Re(\beta)>\max \{0,-\Re(\nu)\})
\end{gathered}
$$

in (2.2) and using the elementary series identity (5.6), if we apply the definition (1.5), we get the desired multiple integral representation (3.2) asserted by Theorem 3.2.

Theorem 3.3. The following $(n+1)$-tuple integral representation for $\Gamma_{A}^{(n)}$ in (2.2) holds true:

$$
\begin{align*}
& \Gamma_{A}^{(n)}\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right]=\frac{1}{\Gamma(\alpha) \Gamma\left(\beta_{1}\right) \cdots \Gamma\left(\beta_{n}\right)} \\
& \quad \cdot \int_{x}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} e^{-s-t_{1}-\cdots-t_{n}} s^{\alpha-1} t_{1}^{\beta_{1}-1} \cdots t_{n}^{\beta_{n}-1} \\
& \quad \cdot{ }_{0} F_{1}\left(-; \gamma_{1} ; x_{1} s t_{1}\right) \cdots{ }_{0} F_{1}\left(-; \gamma_{n} ; x_{n} s t_{n}\right) d s d t_{1} \cdots d t_{n} \tag{3.3}\\
& \left(x \geqq 0 ; \min \left\{\Re(\alpha), \Re\left(\beta_{1}\right), \ldots, \Re\left(\beta_{n}\right)\right\}>0 \quad \text { when } \quad x=0\right) .
\end{align*}
$$

Proof. Using the incomplete Pochhammer symbol $[\alpha ; x]_{m_{1}+\cdots+m_{n}}$ and the classical Pochhammer symbols $\left(\beta_{1}\right)_{m_{1}}, \ldots,\left(\beta_{n}\right)_{m_{n}}$ in the definition (2.2) by considering the integral representation resulting from (1.2) and (1.7), we are led to the desired $(n+1)$-tuple integral representation (3.3) asserted by Theorem 3.3.

Remark 3.4. The Laguerre polynomial $L_{n}^{(\alpha)}(x)$ of order (index) α and degree n in x, the incomplete gamma function $\gamma(k, x)$, the Bessel function $J_{\nu}(z)$ and the modified Bessel function $I_{\nu}(z)$ are expressible in terms of hypergeometric functions as follows (see, e.g., [21]; see also [5, 9, 12, 14, 17, 38, 39]):

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\frac{(\alpha+1)_{n}}{n!}{ }_{1} F_{1}(-n ; \alpha+1 ; x), \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
{ }_{1} F_{1}(\kappa ; \kappa+1 ;-x)=\kappa x^{-\kappa} \gamma(\kappa, x), \tag{3.5}
\end{equation*}
$$

$$
J_{\nu}(z)=\frac{\left(\frac{z}{2}\right)^{\nu}}{\Gamma(\nu+1)}{ }_{0} F_{1}\left(-; \nu+1 ;-\frac{1}{4} z^{2}\right) \quad\left(\nu \in \mathbb{C} \backslash \mathbb{Z}^{-}\right)
$$

and

$$
\begin{equation*}
I_{\nu}(z)=\frac{\left(\frac{z}{2}\right)^{\nu}}{\Gamma(\nu+1)}{ }_{0} F_{1}\left(-; \nu+1 ; \frac{1}{4} z^{2}\right) \quad\left(\nu \in \mathbb{C} \backslash \mathbb{Z}^{-}\right) \tag{3.7}
\end{equation*}
$$

Now, by applying the relationships (3.4) and (3.5) to (3.1) and (3.6) and (3.7) to (3.3), we can deduce certain interesting integral representations for the incomplete Lauricella hypergeometric function in (2.2), which are asserted by Corollaries 3.5 and 3.6 below. We state here the resulting integral representations without proof.
Corollary 3.5. Each of the following integral representations holds true:

$$
\begin{align*}
& \Gamma_{A}^{(n)}\left[(\alpha, x),-m_{1}, \ldots,-m_{n} ; \beta_{1}+1, \ldots, \beta_{n}+1 ; x_{1}, \ldots, x_{n}\right] \\
& =\frac{m_{1}!\cdots m_{n}!}{\left(\beta_{1}+1\right)_{m_{1}} \cdots\left(\beta_{n}+1\right)_{m_{n}} \Gamma(\alpha)} \int_{x}^{\infty} e^{-t} t^{\alpha-1} L_{m_{1}}^{\left(\beta_{1}\right)}\left(x_{1} t\right) \cdots L_{m_{n}}^{\left(\beta_{n}\right)}\left(x_{n} t\right) d t \tag{3.8}
\end{align*}
$$

and
(3.9) $=\frac{\beta_{1} \cdots \beta_{n} x_{1}^{-\beta_{1}} \cdots x_{n}^{-\beta_{n}}}{\Gamma(\alpha)} \int_{x}^{\infty} e^{-t} t^{\alpha-\beta_{1}-\cdots-\beta_{n}-1} \gamma\left(\beta_{1}, x_{1} t\right) \cdots \gamma\left(\beta_{n}, x_{n} t\right) d t$
provided that the integrals involved are convergent.
Corollary 3.6. Each of the following $(n+1)$-tuple integral representations holds true:

$$
\begin{align*}
\Gamma_{A}^{(n)} & {\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}+1, \ldots, \gamma_{n}+1 ;-x_{1}, \ldots,-x_{n}\right] } \\
\quad= & \frac{\Gamma\left(\gamma_{1}+1\right) \cdots \Gamma\left(\gamma_{n}+1\right) x_{1}^{-\frac{\gamma_{1}}{2}} \cdots x_{n}^{-\frac{\gamma_{n}}{2}}}{\Gamma(\alpha) \Gamma\left(\beta_{1}\right) \cdots \Gamma\left(\beta_{n}\right)} \\
& \cdot \int_{x}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} e^{-s-t_{1}-\cdots-t_{n}} s^{\alpha-\frac{\gamma_{1}}{2}-\cdots-\frac{\gamma_{n}}{2}-1} t_{1}^{\beta_{1}-\frac{\gamma_{1}}{2}-1} \cdots t_{1}^{\beta_{n}-\frac{\gamma_{n}}{2}-1} \\
& \cdot J_{\gamma_{1}}\left(2 \sqrt{x_{1} s t_{1}}\right) \cdots J_{\gamma_{n}}\left(2 \sqrt{x_{n} s t_{n}}\right) d s d t_{1} \cdots d t_{n} \tag{3.10}
\end{align*}
$$

and

$$
\begin{align*}
\Gamma_{A}^{(n)} & {\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}+1, \ldots, \gamma_{n}+1 ; x_{1}, \ldots, x_{n}\right] } \\
& =\frac{\Gamma\left(\gamma_{1}+1\right) \cdots \Gamma\left(\gamma_{n}+1\right) x_{1}^{-\frac{\gamma_{1}}{2}} \cdots x_{n}^{-\frac{\gamma_{n}}{2}}}{\Gamma(\alpha) \Gamma\left(\beta_{1}\right) \cdots \Gamma\left(\beta_{n}\right)} \\
& \cdot \int_{x}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} e^{-s-t_{1}-\cdots-t_{n}} s^{\alpha-\frac{\gamma_{1}}{2}-\cdots-\frac{\gamma_{n}}{2}-1} t_{1}^{\beta_{1}-\frac{\gamma_{1}}{2}-1} \cdots t_{1}^{\beta_{n}-\frac{\gamma_{n}}{2}-1} \\
& \cdot I_{\gamma_{1}}\left(2 \sqrt{x_{1} s t_{1}}\right) \cdots I_{\gamma_{n}}\left(2 \sqrt{x_{n} s t_{n}}\right) d s d t_{1} \cdots d t_{n} \tag{3.11}
\end{align*}
$$

provided that the integrals involved are convergent.

4. A Derivative Formula

Differentiating both sides of (2.2) with respect to x_{1}, \ldots, x_{n} partially m_{1}, \ldots, m_{n} times, respectively, we obtain a derivative formula for the incomplete Lauricella hypergeometric function $\Gamma_{A}^{(n)}$ given in the following theorem.
Theorem 4.1. The following derivative formula for $\Gamma_{A}^{(n)}$ holds true:

$$
\begin{align*}
& \frac{\partial^{m_{1}+\cdots+m_{n}}}{\partial x_{1}^{m_{1}} \cdots \partial x_{n}^{m_{n}}}\left\{\Gamma_{A}^{(n)}\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right]\right\} \\
&= \frac{(\alpha)_{m_{1}+\cdots+m_{n}}\left(\beta_{1}\right)_{m_{1}} \cdots\left(\beta_{n}\right)_{m_{n}}}{\left(\gamma_{1}\right)_{m_{1}} \cdots\left(\gamma_{n}\right)_{m_{n}}} \cdot \Gamma_{A}^{(n)}\left[\left(\alpha+m_{1}+\cdots+m_{n}, x\right),\right. \\
&\left.\beta_{1}+m_{1}, \ldots, \beta_{n}+m_{n} ; \gamma_{1}+m_{1}, \ldots, \gamma_{n}+m_{n} ; x_{1}, \ldots, x_{n}\right] \tag{4.1}
\end{align*}
$$

provided that each member of the assertion (4.1) exists.

5. A Set of Transformation Formulas

Here we give two transformation formulas for the incomplete Lauricella hypergeometric function $\Gamma_{A}^{(n)}$ of n variables.
Theorem 5.1. Each of the following transformation formulas holds true:

$$
\begin{gathered}
\Gamma_{A}^{(n)}\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right]=\left(1-x_{1}\right)^{-\alpha} \\
\cdot \Gamma_{A}^{(n)}\left[\left(\alpha, x\left(1-x_{1}\right)\right), \gamma_{1}-\beta_{1}, \beta_{2}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n}\right.
\end{gathered}
$$

$$
\begin{equation*}
\left.\frac{x_{1}}{x_{1}-1}, \frac{x_{2}}{1-x_{1}}, \cdots, \frac{x_{n}}{1-x_{1}}\right] \tag{5.1}
\end{equation*}
$$

and

$$
\begin{array}{r}
\Gamma_{A}^{(n)}\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right]=\left(1-x_{1}-\cdots-x_{n}\right)^{-\alpha} \\
\quad \cdot \Gamma_{A}^{(n)}\left[\left(\alpha, x\left(1-x_{1}-\cdots-x_{n}\right)\right), \gamma_{1}-\beta_{1}, \ldots, \gamma_{n}-\beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ;\right. \tag{5.2}
\end{array}
$$

Proof. If we first apply Kummer's transformation formula (see, e.g., [21, p. 125, Eq. (2)]):

$$
\begin{equation*}
{ }_{1} F_{1}(\alpha ; \beta ; z)=e^{z}{ }_{1} F_{1}(\beta-\alpha ; \beta ;-z) \tag{5.3}
\end{equation*}
$$

to (3.1) and then set

$$
\tau=\left(1-x_{1}\right) t \quad \text { and } \quad d \tau=\left(1-x_{1}\right) d t
$$

in the resulting integral, we get the first transformation formula (5.1). A similar argument will establish the second transformation formula (5.2).

Corollary 5.2. The following expansion formula holds true:

$$
\begin{equation*}
{ }_{1} \Gamma_{0}^{(n)}[(\alpha, x) ;-; z]=(1-z)^{-\alpha}[\alpha ; x(1-z)]_{0} \tag{5.4}
\end{equation*}
$$

for the incomplete hypergeometric function ${ }_{1} \Gamma_{0}$ defined by (1.5) for $p-1=q=0$, $[\lambda ; x]_{0}$ being the incomplete Pochhammer symbol given by (1.6) for $\nu=0$.

Proof. Upon setting $\gamma_{j}=\beta_{j}(j=1, \ldots, n)$ in (5.2), we find that

$$
\begin{align*}
\sum_{m_{1}, \ldots, m_{n}=0}^{\infty} & {[\alpha ; x]_{m_{1}+\cdots+m_{n}} \frac{x_{1}^{m_{1}}}{m_{1}!} \cdots \frac{x_{n}^{m_{n}}}{m_{n}!} } \\
& =\left(1-x_{1}-\cdots-x_{n}\right)^{-\alpha}\left[\alpha ; x\left(1-x_{1}-\ldots-x_{n}\right)\right]_{0} \tag{5.5}
\end{align*}
$$

which, in view of the elementary series identity [36, p. 52, Eq. 1.6(3)]:

$$
\begin{equation*}
\sum_{m_{1}, \ldots, m_{n}=0}^{\infty} \Omega\left(m_{1}+\cdots+m_{n}\right) \frac{x_{1}^{m_{1}}}{m_{1}!} \cdots \frac{x_{n}^{m_{n}}}{m_{n}!}=\sum_{m=0}^{\infty} \Omega(m) \frac{\left(x_{1}+\cdots+x_{m}\right)^{m}}{m!} \tag{5.6}
\end{equation*}
$$

can easily be simplified to yield the assertion (5.4) of Corollary 5.2 when we put $x_{1}+\cdots+x_{n}=z$.

Remark 5.3. Since

$$
\left.(\lambda ; x)_{0}\right|_{x=0}=\left.[\lambda ; x]_{0}\right|_{x=0}=1
$$

in its special case when $x=0$, Corollary 5.2 would reduce immediately to the binomial expansion given by

$$
\begin{equation*}
{ }_{1} F_{0}(\alpha ;-; z)=\sum_{n=0}^{\infty}(\alpha)_{n} \frac{z^{n}}{n!}=(1-z)^{-\alpha} \quad(|z|<1 ; \alpha \in \mathbb{C}) . \tag{5.7}
\end{equation*}
$$

Remark 5.4. In light of the expansion formula (5.4) asserted by Corollary 5.2, n-tuple integral representation for $\Gamma_{A}^{(n)}$ in Theorem 3.2 can be rewritten as follows:
holds true:

$$
\begin{gathered}
\Gamma_{A}^{(n)}\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right]=\frac{1}{B\left(\beta_{1}, \gamma_{1}-\beta_{1}\right) \cdots B\left(\beta_{n}, \gamma_{n}-\beta_{n}\right)} \\
\quad \cdot \int_{0}^{1} \cdots \int_{0}^{1} t_{1}^{\beta_{1}-1} \cdots t_{n}^{\beta_{n}-1}\left(1-t_{1}\right)^{\gamma_{1}-\beta_{1}-1} \cdots\left(1-t_{n}\right)^{\gamma_{n}-\beta_{n}-1} \\
5.8) \quad\left(1-x_{1} t_{1}-\cdots-x_{n} t_{n}\right)^{-\alpha}\left[\alpha ; x\left(1-x_{1} t_{1}-\cdots-x_{n} t_{n}\right)\right]_{0} d t_{1} \cdots d t_{n} \\
\left(\Re\left(\gamma_{j}\right)>\Re\left(\beta_{j}\right)>0(j=1, \ldots, n) ; x \geqq 0\right) .
\end{gathered}
$$

Finally, by applying the following known relationship of the complementary error function $\operatorname{erfc}(z)$ with the incomplete gamma function $\Gamma(s, x)$ (see, for example, [36, p. 40, Eq. 1.3(28)]):

$$
\operatorname{erfc}(z)=\frac{1}{\sqrt{\pi}} \Gamma\left(\frac{1}{2}, z^{2}\right)
$$

a special case of Corollary 5.2 yields the following result:

$$
\begin{equation*}
{ }_{1} \Gamma_{0}\left[\left(\frac{1}{2}, x\right) ;-; z\right]=\frac{1}{\sqrt{1-z}} \operatorname{erfc}(\sqrt{x(1-z)}) \tag{5.9}
\end{equation*}
$$

6. Finite Sums Involving $\Gamma_{A}^{(n)}$

Here we consider some finite sum formulas associated with the incomplete Lauricella function $\Gamma_{A}^{(n)}$.
Theorem 6.1. The following finite sum formula for $\Gamma_{A}^{(n)}$ holds true:

$$
\begin{align*}
& \sum_{k=0}^{m} \Gamma_{A}^{(n)}\left[(\alpha, x),-k,-m+k, \beta_{3}, \ldots, \beta_{n} ; 1,1, \gamma_{3}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right] \\
& =(m+1) \Gamma_{A}^{(n-1)}\left[(\alpha, x),-m, \beta_{3}, \ldots, \beta_{n} ; 2, \gamma_{3}, \ldots, \gamma_{n} ; x_{1}+x_{2}, x_{3}, \ldots, x_{n}\right] \tag{6.1}\\
& \quad\left(\left|x_{1}\right|+\cdots+\left|x_{n}\right|<1 ; \Re(\alpha)>0 \quad \text { when } \quad x=0\right) .
\end{align*}
$$

Proof. We make use the integral representation (3.1) and the following well-known identity for the Laguerre polynomials (see, e.g., [21, p. 209, Eq. (3)]):

$$
\begin{equation*}
\sum_{k=0}^{m} L_{k}^{(\lambda)}(x) L_{m-k}^{(\mu)}(y)=L_{m}^{(\lambda+\mu+1)}(x+y) \tag{6.2}
\end{equation*}
$$

for $\lambda=\mu=0$. Thus, in view of the ${ }_{1} F_{1}$ representation (3.4) for the Laguerre polynomials, we get the desired finite sum formula (6.1) asserted by Theorem 6.1.

Theorem 6.2. The following multiple finite sum formula for $\Gamma_{A}^{(n)}$ holds true:

$$
\begin{gathered}
\sum_{k_{1}=0}^{m_{1}} \cdots \sum_{k_{s}=0}^{m_{s}} \Gamma_{A}^{(2 s)}\left[(\alpha, x),-k_{1},-m_{1}+k_{1}, \ldots,-k_{s},-m_{s}+k_{s} ; 1, \ldots, 1 ; x_{1}, \ldots, x_{2 s}\right] \\
=\left(m_{1}+1\right) \cdots\left(m_{s}+1\right) \Gamma_{A}^{(s)}\left[(\alpha, x),-m_{1}, \ldots,-m_{s} ; 2, \ldots, 2 ; x_{1}+x_{2}, \ldots, x_{2 s-1}+x_{2 s}\right] \\
\left(\left|x_{1}\right|+\cdots+\left|x_{n}\right|<1 ; \Re(\alpha)>0 \quad \text { when } \quad x=0\right) .
\end{gathered}
$$

Proof. By iterating the method used in proving the finite summation formula (6.1), which is based upon the identity (6.2) and the integral representation (3.1), the ${ }_{1} F_{1}$ representation (3.4) for the Laguerre polynomials yields the desired multiple summation formula (6.3) asserted by Theorem 6.2.

Theorem 6.3. The following finite sum formula for $\Gamma_{A}^{(n)}$ holds true:

$$
\begin{align*}
& \sum_{k=0}^{m}\binom{\lambda+k}{k} \Gamma_{A}^{(n)}\left[(\alpha, x),-k,-k, \beta_{3}, \ldots, \beta_{n} ; \lambda+1, \lambda+1, \gamma_{3}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right] \\
& =\frac{(\lambda+1)_{m+1}}{m!(\alpha-1)}\left(x_{1}-x_{2}\right)^{-1} \\
& \quad \cdot \Gamma_{A}^{(n)}\left[(\alpha-1, x),-m,-m-1, \beta_{3}, \ldots, \beta_{n} ; \lambda+1, \lambda+1, \gamma_{3}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right] \\
& \quad+x_{1} \rightleftharpoons x_{2} \quad(x \geqq 0 ; \alpha \neq 1 ; \Re(\alpha)>0 \quad \text { when } \quad x=0), \tag{6.4}
\end{align*}
$$

where $x_{1} \rightleftharpoons x_{2}$ indicates the presence of a second term that originates from the first term by interchanging x_{1} and x_{2}.
Proof. Applying the relationship (3.4) and the following known result (see, e.g., [21, p. 206, Eq. (10)]):

$$
\begin{align*}
\sum_{k=0}^{m} & \frac{k!}{(\lambda+1)_{k}} L_{k}^{(\lambda)}(x) L_{k}^{(\lambda)}(y) \\
& =\frac{(m+1)!}{(\lambda+1)_{m}}(x-y)^{-1}\left[L_{m}^{(\lambda)}(x) L_{m+1}^{(\lambda)}(y)-L_{m+1}^{(\lambda)}(x) L_{m}^{(\lambda)}(y)\right] \tag{6.5}
\end{align*}
$$

to the integral representation (3.1), we get the desired finite sum formula (6.5) asserted by Theorem 6.3.

Remark 6.4. By suitably iterating the above process, we obtain

$$
\begin{align*}
& \sum_{k_{1}=0}^{m_{1}} \sum_{k_{2}=0}^{m_{2}} \sum_{k_{3}=0}^{m_{3}}\binom{a_{1}+k_{1}}{k_{1}}\binom{a_{2}+k_{2}}{k_{2}}\binom{a_{3}+k_{3}}{k_{3}} \\
& \cdot \Gamma_{A}^{(n)}\left[(\alpha, x),-k_{1},-k_{1},-k_{2},-k_{2},-k_{3},-k_{3}, \beta_{7}, \ldots, \beta_{n} ;\right. \\
& =\frac{\left(a_{1}+1\right)_{m_{1}+1}\left(a_{2}+1\right)_{m_{2}+1}\left(a_{3}+1\right)_{m_{3}+1}}{\left.a_{1}+1, a_{1}+1, a_{2}+1, a_{2}+1, a_{3}+1, a_{3}+1, \gamma_{7}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right]} m_{2}\left[(x _ { 3 } - x _ { 4 }) ^ { - 1 } \left\{\left(x_{5}-x_{6}\right)^{-1}!(\alpha-1)(\alpha-2)(\alpha-3)\right.\right. \\
& \cdot \Gamma_{A}^{(n)}\left[(\alpha-3, x),-m_{1},-m_{1}-1,-m_{2},-m_{2}-1,-m_{3},-m_{3}-1, \beta_{7}, \ldots, \beta_{n} ;\right. \\
& \left.a_{1}+1, a_{1}+1, a_{2}+1, a_{2}+1, a_{3}+1, a_{3}+1, \gamma_{7}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right] \\
& \text { (6.6) } \\
& \left.\left.\quad+x_{5} \rightleftharpoons x_{6}\right\}+x_{3} \rightleftharpoons x_{4}\right]+x_{1} \rightleftharpoons x_{2}, \tag{6.6}
\end{align*}
$$

where the right-hand side obviously has 2^{3} terms. Similarly, we can derive a more general multiple finite summation formula for $\Gamma_{A}^{(n)}$ in the following form:

$$
\begin{gather*}
\sum_{k_{1}=0}^{m_{1}} \cdots \sum_{k_{s}=0}^{m_{s}}\binom{a_{1}+k_{1}}{k_{1}} \cdots\binom{a_{s}+k_{s}}{k_{s}} \cdot \Gamma_{A}^{(2 s)}\left[(\alpha, x),-k_{1},-k_{1}, \ldots,-k_{s}\right. \\
\left.-k_{s} ; a_{1}+1, a_{1}+1, \ldots, a_{s}+1, a_{s}+1 ; x_{1}, \cdots, x_{2 s}\right] \tag{6.7}
\end{gather*}
$$

whose detailed expression is being left as an exercise for the interested reader.
The special cases of the identities in this section when $x=0$ are seen to reduce to the corresponding known results due to Padmanabham and Srivastava [19]. Moreover, the special cases of the results in this section when $x=0$ and $n=2$ can be seen to yield the known identities due to Srivastava [24].

7. The Incomplete Lauricella Function $\Gamma_{A}^{(2 s)}$ as an s-Fold Sum

By interpreting the first two ${ }_{1} F_{1}$ functions occurring on the right-hand side of (3.1) as a Cauchy product, it is easily seen that the incomplete Lauricella function $\Gamma_{A}^{(n)}$ can be expressed as a series whose terms are composed of ${ }_{3} F_{2}$ and $\Gamma_{A}^{(n-2)}$ as follows:

$$
\begin{align*}
& \Gamma_{A}^{(n)}\left[(\alpha, x), \beta_{1}, \ldots, \beta_{n} ; \gamma_{1}, \ldots, \gamma_{n} ; x_{1}, \ldots, x_{n}\right] \\
& \quad=\sum_{m=0}^{\infty} \frac{(\alpha)_{m}\left(\beta_{1}\right)_{m}}{\left(\gamma_{1}\right)_{m}} \frac{x_{1}^{m}}{m!}{ }_{3} F_{2}\left[\begin{array}{r}
-m, 1-\gamma_{1}-m, \beta_{2} ; \\
1-\beta_{1}-m, \gamma_{2} ;
\end{array} \quad-\frac{x_{2}}{x_{1}}\right] \\
& \quad \cdot \Gamma_{A}^{(n-2)}\left[(\alpha+m, x), \beta_{3}, \ldots, \beta_{n} ; \gamma_{3}, \ldots, \gamma_{n} ; x_{3}, \ldots, x_{n}\right] \tag{7.1}\\
& \quad\left(x \geqq 0 ;\left|x_{1}\right|+\cdots+\left|x_{n}\right|<1 \quad \text { when } \quad x=0\right) .
\end{align*}
$$

More generally, by iterating the above process s times, this last sum formula (7.1) would finally express $\Gamma_{A}^{(2 s)}$ as a multiple series whose terms are s-tuple products of the hypergeometric ${ }_{3} F_{2}$ functions:

$$
\begin{gather*}
\Gamma_{A}^{(2 s)}\left[(\alpha, x), \beta_{1}, \ldots, \beta_{2 s} ; \gamma_{1}, \ldots, \gamma_{2 s} ; x_{1}, \ldots, x_{2 s}\right]=\sum_{m_{1}, \ldots, m_{s}=0}^{\infty}[\alpha ; x]_{m_{1}+\cdots+m_{s}} \\
\cdot \prod_{j=1}^{s}\left\{\frac{\left(\beta_{2 j-1}\right)_{m_{j}}}{\left(\gamma_{2 j-1}\right)_{m_{j}}} \frac{\left.x_{2 j-1}^{m_{j}}{ }_{3} F_{2}\left[\begin{array}{r}
-m_{j}, 1-\gamma_{2 j-1}-m_{j}, \beta_{2 j} ; \\
1-\beta_{2 j-1}-m_{j}, \gamma_{2 j} ;
\end{array}-\frac{x_{2 j}}{x_{2 j-1}}\right]\right\}}{\left(x \geqq 0 ;\left|x_{1}\right|+\cdots+\left|x_{2 s}\right|<1 \quad \text { when } \quad x=0\right) .}\right. \tag{7.2}
\end{gather*}
$$

Remark 7.1. The special case of (7.1) when $n=2$ can easily be rewritten in terms of the incomplete Appell function Γ_{2}. Also the special case of (7.1) when $x=0$ yields a known result (see, e.g., [36, p. 181, Problem 38(ii)]). Furthermore, by setting $x=0$ in the results presented in this section, we are led to the corresponding known identities due to Padmanabham and Srivastava [19].

8. Potential Areas of Application of Incomplete Hypergeometric Functions

The familiar decomposition of the gamma function $\Gamma(z)$ into the incomplete gamma functions $\gamma(s, x)$ and $\Gamma(s, x)$ is well-recognized to be a non-trivial step as the closed-form solution of a considerably large number of problems in (for example) applied mathematics, astrophysics, nuclear and molecular physics, statistics and engineering, transport theory and fluid flow, diffraction and plasma wave problems, number theory and random walks, Lorentz-Doppler line broadening, design of particle acceleration, and so on, can be expressed in terms of the incomplete gamma functions $\gamma(s, x)$ and $\Gamma(s, x)$ defined by (1.1) and (1.2), respectively.

In their pioneering work, Srivastava et al. [30] showed that the generalized incomplete hypergeometric functions

$$
{ }_{p} \gamma_{q} \quad\left(p, q \in \mathbb{N}_{0}\right) \quad \text { and } \quad{ }_{p} \Gamma_{q} \quad\left(p, q \in \mathbb{N}_{0}\right)
$$

are useful in engineering and applied sciences. In particular, they applied these generalized incomplete hypergeometric functions in such diverse areas as (for example) communication theory, probability theory and groundwater pumping modelling. The generalized Marcum q - and Q-functions given, in terms of the modified Bessel function $I_{\nu}(z)$ in (3.7), by

$$
\begin{equation*}
q_{M}(\alpha, \beta):=\frac{1}{\alpha^{M-1}} \int_{0}^{\beta} t^{M} e^{-\frac{1}{2}\left(t^{2}+\alpha^{2}\right)} I_{M-1}(\alpha t) d t \tag{8.1}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{M}(\alpha, \beta):=\frac{1}{\alpha^{M-1}} \int_{\beta}^{\infty} t^{M} e^{-\frac{1}{2}\left(t^{2}+\alpha^{2}\right)} I_{M-1}(\alpha t) d t \tag{8.2}
\end{equation*}
$$

respectively, arise in performance analysis of several types of communications (see, for details and also for citations of related earlier works, [30]). Their special case when $M=1$ were introduced initially by Marcum [15] during the study of the statistical theory of target detection by pulsed radar. Annamalai and Tellambura [3] studied the Cauchy-Schwarz bounds on these functions and discussed their applications in wireless communications. Simon and Alouini (see [22]) applied these functions in the unified study of digital communication over fading channels. As a matter of fact, the generalized Marcum functions in (8.1) and (8.2) are very special cases of the generalized incomplete hypergeometric functions

$$
{ }_{p} \gamma_{q} \quad\left(p, q \in \mathbb{N}_{0}\right) \quad \text { and } \quad{ }_{p} \Gamma_{q} \quad\left(p, q \in \mathbb{N}_{0}\right)
$$

as specified below:

$$
q_{M}(\sqrt{2 \omega}, \sqrt{2 x})=e^{-\omega}{ }_{1} \gamma_{1}\left[\begin{array}{c}
(M, x) ; \tag{8.3}\\
\\
M ;
\end{array}\right]
$$

and

$$
Q_{M}(\sqrt{2 \omega}, \sqrt{2 x})=e^{-\omega}{ }_{1} \Gamma_{1}\left[\begin{array}{c}
(M, x) ; \tag{8.4}\\
\\
\\
M ;
\end{array}\right]
$$

which, in light of (1.10), yield the following decomposition formula:

$$
\begin{equation*}
q_{M}(\alpha, \beta)+Q_{M}(\alpha, \beta)=1 \tag{8.5}
\end{equation*}
$$

satisfied by the generalized Marcum functions defined above by (8.1) and (8.2).
In view of the above-mentioned developments, therefore, it is quite natural to expect that the incomplete hypergeometric functions in two and more variables, too, will provide closed-form solutions to a variety of problems in at least some of the many diverse areas of science and engineering. For example, the various integral formulas and integral representations (which are given in this paper) would substantially aid in the evaluation of single, double and multiple definite integrals involving simpler complete and incomplete hypergeometric functions in one and more variables. In particular, the Eulerian type integral representations may be interpreted as the familiar Riemann-Liouville fractional integrals. These integrals, together with the Laplace transform formulas, are potentially useful in solving some families of fractional differential equations (see, for details, [10]). Multivariable hypergeometric functions and their incomplete counterparts are, of course, useful also
in solving systems of partial differential equations.

9. Concluding Remarks and Observations

In our present investigation, with the help of the incomplete Pochhammer symbols $(\lambda ; x)_{\nu}$ and $[\lambda ; x]_{\nu}$, we have introduced the incomplete Lauricellla functions $\gamma_{A}^{(n)}$ and $\Gamma_{A}^{(n)}$ of n variables, whose special cases when $n=1$ and $n=2$ reduce to the incomplete Gauss hypergeometric functions and the incomplete second Appell functions of two variables (see [30] and [6]), respectively. We have investigated their such diverse properties as integral representations and finite summation formulas. The special cases of the results obtained in this paper when $x=0$ would reduce to the corresponding known results for the Appell and Lauricellla functions (see, for details, $[4,19,24,35,36])$. We have provided relevant connections of some of the special cases of the main results derived here with known identities. Several potential areas of application of these incomplete hypergeometric functions in one, two and more variables have also been indicated.

Acknowledgements. This work was supported by Dongguk University Research Fund (Gyeongju). The present investigation was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Tenth Printing, National Bureau of Standards, Applied Mathematics Series 55, Washington, D.C., 1972; Reprinted by Dover Publications, New York, 1965.
[2] L. C. Andrews, Special functions for engineers and applied mathematicians, Macmillan Company, New York, 1985.
[3] A. Annamalai and C. Tellambura, Cauchy-Schwarz bound on the generalized Marcum Q-function with applications, Wireless Commun. Mob. Comput., 1(2001), 243-253.
[4] W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics 32, Stechert-Hafner, Inc., New York, 1964.
[5] B. C. Carlson, Special functions of applied mathematics, Academic Press, New York, San Francisco and London, 1977.
[6] A. Çetinkaya, The incomplete second Appell hypergeometric functions, Appl. Math. Comput., 219(2013), 8332-8337.
[7] M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159(2004), 589-602.
[8] M. A. Chaudhry and S. M. Zubair, On a class of incomplete gamma functions with applications, Chapman and Hall (CRC Press Company), Boca Raton, FL, 2002.
[9] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, Vols. I, II, McGraw-Hill Book Company, New York, Toronto and London, 1953.
[10] A. A. Kilbas, H. M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematical Studies 204, Elsevier (NorthHolland) Science Publishers, Amsterdam, London and New York, 2006.
[11] S.-D. Lin, H. M. Srivastava and J.-C. Yao, Some classes of generating relations associated with a family of the generalized Gauss type hypergeometric functions, Appl. Math. Inf. Sci. 9(2015), 1731-1738.
[12] Y. L. Luke, Mathematical functions and their approximations, Academic Press, New York, San Francisco and London, 1975.
[13] M.-J. Luo and R. K. Raina, Extended generalized hypergeometric functions and their applications, Bull. Math. Anal. Appl., 5(4)(2013), 65-77.
[14] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Third Enlarged edition, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtingung der Anwendungsgebiete, Bd. 5, Springer-Verlag, Berlin, Heidelberg and New York, 1966.
[15] J. I. Marcum, A statistical theory of target detection by pulsed radar, Trans. IRE, IT-6(1960), 59-267.
[16] K. B. Oldham, J. Myland and J. Spanier, An atlas of functions, With Equator, the atlas function calculator, Second edition, With 1 CD-ROM (Windows), Springer, New York, 2009.
[17] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of mathematical functions, [With 1 CD-ROM (Windows, Macintosh and UNIX)], US Department of Commerce, National Institute of Standards and Technology, Washington, D.C., 2010; Cambridge University Press, Cambridge, London and New York, 2010.
[18] E. Özergin, M. A. Özarslan and A. Altın, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., 235(2011), 4601-4610.
[19] P. A. Padmanabham and H. M. Srivastava, Summation formulas associated with the Lauricella function $F_{A}^{(r)}$, Appl. Math. Lett., 13(2000), 65-70.
[20] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and series, Vol.II, Gordon and Breach Science Publishers, New York, 1988.
[21] E. D. Rainville, Special functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
[22] M. K. Simon and M.-S. Alouini, Digital communication over fading channels: a unified approach to performance analysis, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 2000.
[23] L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, London and New York, 1966.
[24] H. M. Srivastava, On a summation formula for the Appell function F_{2}, Proc. Cambridge Philos. Soc., 63(1967), 1087-1089.
[25] H. M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci., 5(2011), 390-444.
[26] R. Srivastava, Some properties of a family of incomplete hypergeometric functions, Russian J. Math. Phys., 20(2013), 121-128.
[27] R. Srivastava, Some generalizations of Pochhammer's symbol and their associated families of hypergeometric functions and hypergeometric polynomials, Appl. Math. Inf. Sci., 7(2013), 2195-2206.
[28] R. Srivastava, Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions, Appl. Math. Comput., 243(2014), 132-137.
[29] H. M. Srivastava, A. Çetinkaya and İ. O. Kıymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput., 226(2014), 484-491.
[30] H. M. Srivastava, M. A. Chaudhry and R. P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integral Transforms Spec. Funct., 23(2012), 659-683.
[31] R. Srivastava and N. E. Cho, Generating functions for a certain class of incomplete hypergeometric polynomials, Appl. Math. Comput., 219(2012), 3219-3225.
[32] R. Srivastava and N. E. Cho, Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials, Appl. Math. Comput., 234(2014), 277-285.
[33] H. M. Srivastava and J. Choi, Series associated with the zeta and related functions, Kluwer Acedemic Publishers, Dordrecht, Boston and London, 2001.
[34] H. M. Srivastava and J. Choi, Zeta and q-zeta functions and associated series and integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
[35] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian hypergeometric series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
[36] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
[37] N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1996.
[38] G. N. Watson, A Treatise on the Theory of Bessel Functions, Second edition, Cambridge University Press, Cambridge, London and New York, 1944.
[39] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth edition, Cambridge University Press, Cambridge, London and New York, 1963.

[^0]: *Corresponding Author.
 Received June 7, 2016; accepted December 6, 2016.
 2010 Mathematics Subject Classification: Primary 33B15, 33B20, 33C05, 33C15, 33C20; Secondary 33B99, 33C99, 60B99.
 Key words and phrases: Gamma functions; incomplete gamma functions; Pochhammer symbol; incomplete Pochhammer symbols; incomplete generalized hypergeometric functions; Lauricella functions; Appell functions; Laguerre polynomials; Bessel and modified Bessel functions; incomplete second Appell functions; incomplete Lauricella functions of several variables; Marcum q - and Q-functions.

