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OPERATIONAL CALCULUS ASSOCIATED WITH CERTAIN

FAMILIES OF GENERATING FUNCTIONS

Rehana Khan and Subuhi Khan

Abstract. In this paper, we discuss how the operational calculus can be
exploited to the theory of mixed generating functions. We use operational
methods associated with multi-variable Hermite polynomials, Laguerre
polynomials and Bessels functions to drive identities useful in electro-
magnetism, fluid mechanics etc. Certain special cases giving bilateral
generating relations related to these special functions are also discussed.

1. Introduction

The appropriate combination of methods, relevant to generalized operational
calculus and to special functions can be a very useful tool to treat a large
body of problems both in physics and mathematics. The exponential operator
techniques with the principle of quasi monomiality can be used for a more
general insight into the theory of ordinary polynomials and for their extension.
The idea of monomiality came from the concept of poweroid suggested by
Steffensen [15]. The monomiality principle is reformulated and developed by
Dettoli [5].

According to the principle of monomiality the polynomials pn(x) (n ∈ N, x ∈
C) are called quasi-monomials, if two operators M̂ and P̂ , can be defined in
such a way that

(1.1)
M̂{pn(x)} = pn+1(x),

P̂{pn(x)} = npn−1(x).

The operators M̂ and P̂ are called multiplicative and derivative operators
and can be recognized as raising and lowering operators acting on the polyno-
mials pn(x). Obviously M̂ and P̂ satisfy the commutative relation

(1.2) [P̂ , M̂ ] = 1
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and thus display a Weyl group structure. Further consequence of (1.1) is the

eigen property of M̂P̂

(1.3) M̂P̂{pn(x)} = npn(x).

The polynomials pn(x) are obtained by taking the action of M̂ on p0(x)

(1.4) pn(x) = M̂n p0(x),

(in the following we shall always set p0(x) = 1) and consequently the exponen-
tial generating function of pn(x) is

(1.5) G(x, t) =

∞
∑

n=0

pn(x)
tn

n!
= exp(tM̂){1}.

The principle of monomility for Hermite and Lageurre polynomials can be
exploited in many useful and flexible ways.

In the next section, we exploit the operational techniques to find the generat-
ing function for Hermite polynomials Hn(x, y, z; τ1, τ2). The reason of interest
for this family of Hermite polynomials is due to their mathematical importance
and the fact that these polynomials give rise to the eigenstates of the quantum
harmonic oscillator.

2. Generating function for Hn(x, y, z; τ1, τ2)

First, we recall the definition of 2-variable 1-parameter Hermite polynomials
(2V1PHP) [8]:

(2.1) exp
(

xt+ yτ t2
)

=

∞
∑

n=0

Hn(x, y; τ) t
n.

In this section, we define the 3-variable 2-parameter analogue of 2V1PHP
Hn(x, y; τ) as follows [11]:

(2.2) Hn(x, y, z; τ1, τ2) = n!

[n3 ]
∑

r=0

(zτ2 )rHn−3r(x, y; τ1)

r!(n − 3r)!
,

which is equivalent to the following generating function for Hn(x, y, z; τ1, τ2)

(2.3) exp
(

xt+ yτ1 t2 + zτ2 t3
)

=

∞
∑

n=0

Hn(x, y, z; τ1, τ2) t
n.

These polynomials are quasi-monomials under the action of the operators

(2.4)
M̂ = x+ 2yτ1

∂

∂x
+ 3zτ2

∂2

∂x2
,

P̂ =
∂

∂x
,
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which play the role of multiplicative and derivative operators respectively in
the sense that

M̂{Hn(x, y, z; τ1, τ2)} = Hn+1(x, y, z; τ1, τ2),

P̂{Hn(x, y, z; τ1, τ2)} = nHn−1(x, y, z; τ1, τ2).

We can explicitly write the polynomials Hn(x, y, z; τ1, τ2) in terms of the
operators (2.4) as follows:

(2.5) Hn(x, y, z; τ1, τ2) =
(

x+ 2yτ1
∂

∂x
+ 3zτ2

∂2

∂x2

)n

.

Furthermore, the polynomials Hn(x, y, z; τ1, τ2) are the solution of

∂

∂y
Hn(x, y, z; τ1, τ2) =

∂2

∂x2
Hn(x, y, z; τ1, τ2)

and
∂

∂z
Hn(x, y, z; τ1, τ2) =

∂3

∂x3
Hn(x, y, z; τ1, τ2),

which gives the operational rule

(2.6) Hn(x, y, z; τ1, τ2) = eyτ1
∂2

∂x2 +zτ2
∂3

∂x3 (xn),

which for τ1 = τ2 = 1, reduces to operational rule for polynomials Hn(x, y, z)
[4] as:

(2.7) Hn(x, y, z) = ey
∂2

∂x2 +z ∂3

∂x3 (xn).

The previous considerations confirm that the most of the properties of fam-
ilies of polynomials, recognized as quasi monomials, can be deduced, quite
straight forwardly, by using operational rules associated with the relevant mul-
tiplicative and derivative operators. Furthermore, they suggest that we can
define families of isospectral problems by exploiting the correspondence:

M̂ ←→ x

P̂ ←→ ∂x

pn(x)←→ xn

We can therefore use the polynomials pn(x) as a basis to introduce new func-
tions with eigenvalues corresponding to the ordinary case.

To obtain the generating function, we consider the following relation [13]

(2.8)

∞
∑

l=0

ck−lLl
k−l(−bc)xl = ebx (x+ c)

k
,

with Ll
α(x) being associated Laguerre polynomials [12],

Ln
α(x) = Γ(α+ n+ 1)

∞
∑

r=0

(−1)rxr

r!Γ(a + r + 1)(n− r)!
.
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We replace x by
(

x+ 2yτ1
∂
∂x + 3zτ2

∂2

∂x2

)

in (2.8) and use the identity (2.6) to

get

(2.9)

∞
∑

l=0

ck−lLl
k−l(−bc)Hn(x, y, z; τ1, τ2)

= e
b
(

x+2yτ1
∂
∂x+3zτ2

∂2

∂x2

)

Hn(x+ c, y, z; τ1, τ2).

Now by decoupling the exponential on the right hand side of (2.9) by means
of the rule [7]

eÂ+B̂ = em
2/12e−m/2Â1/2+Â

eB̂; [Â, B̂] = mÂ1/2,

with

m = 2
√
3 b3/2(zτ2)

1/2
,

where Â and B̂ are the operators and m a complex number, we find

(2.10)

∞
∑

l=0

ck−lLl
k−l(−bc)Hn(x, y, z; τ1, τ2)

= exp
(

b3zτ2
)

exp

(

−3b2zτ2
∂

∂x
+ 3bzτ2

∂2

∂x2

)

exp

(

bx+ 2byτ1
∂

∂x

)

Hk(x + c, y, z; τ1, τ2).

Again decoupling the exponential on the right hand side of (2.10) by means
of the rule [7]

eÂ+B̂ = eÂ+B̂e−m/2; [Â, B̂] = m,

and by using the identity

eα
dm

dxm
f(x) = f

(

x+mα
dm−1

dxm−1

)

eα
dm

dxm

we obtain

(2.11)

∞
∑

l=0

ck−lLl
k−l(−bc)Hl(x, y, z; τ1, τ2)

= exp
(

bx+ b2yτ1 + b3zτ2
)

exp

(

−3b2zτ2
∂

∂x
+ 3bzτ2

∂2

∂x2

)

Hk(x + 2byτ1 + c, y, z; τ1, τ2).

The action of the exponential operators, on the polynomialsHk(x, y, z; τ1, τ2)
can be specified by (2.11) and

eα
∂
∂x f(x) = f(x+ α)
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finally gives the generating function for Hn(x, y, z; τ1, τ2) as

(2.12)

∞
∑

l=0

ck−lLl
k−l(−bc)Hl(x, y, z; τ1, τ2)

= exp
(

bx+ b2yτ1 + b3zτ2
)

Hk(x+ 2byτ1 + 3b2zτ2 + c, yτ1 + 3bzτ2, z; τ1, τ2).

In the next section, we discuss how the method we have just outlined can be
exploited to the theory of mixed generating functions and will show that they
provide a new point of view to the theory of generalized special functions of
many variables. These special functions are useful in electromagnetism, wave
propagation, beam life-time in storage ring [16] and fluid mechanics etc.

3. Operational formulism and mixed generating functions

The theory of mixed generating functions has been pioneered by Carlitz [3]
and Dattoli et al. [6], who employed the Lagrange expansion as the essential
tool to develop a unifying point of view on the problem and to drive families
of mixed generating functions in a fairly direct way [14].

The two variable extension of Laguerre polynomials Ln(x, y) are defined by
[9]

(3.1) Ln(x, y) = n!

n
∑

r=0

(−1)ryn−rxr

(n− r)!(r!)
2 ,

satisfying the property

Ln(x, 1) = Ln(x),

with Ln(x) being ordinary Laguerre polynomials and

Ln(x, 0) =
(−x)n
n!

.

The Laguerre polynomials Ln(x, y) behave as quasi-monomials [5] under the
action of the operators

(3.2) M̂ = y −D−1
x , P̂ = −∂xx∂x,

where D−1
x denotes the inverse of the derivative operator, will be characterized

by the operational rule

D−n
x (1) =

xn

n!
.

Furthermore, the generating function for the Ln(x, y) is given by [5]

(3.3)

∞
∑

n=0

tn

n!
Ln(x, y) = et(y−D−1

x )(1) = exp(yt) C0(xt),
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where C0(x) denotes the zeroth-order Tricomi function. The ordinary Tricomi
functions Cn(x) are defined as [1]:

(3.4) Cn(x) =

∞
∑

r=0

(−x)r
r!(n + r)!

= x−n/2Jn(2
√
x),

and Jn(x) denotes the ordinary Bessel function.
The polynomials Ln(x, y) can explicitly written in the form [5]

(3.5)

Ln(x, y) =
(

y −D−1
x

)n

=

n
∑

r=0

(

n

r

)

(−1)ryn−rD−r
x (1)

= n!
n
∑

r=0

(−1)ryn−rxr

(n− r)!(r!)2
,

and are a fairly direct consequence of the properties of the operator D−1
x .

Further

(3.6)

exp

(

−y ∂

∂x
x

∂

∂x

)

(−1)nxn

n!
= Ln(x, y),

exp

(

−y ∂

∂x
x

∂

∂x

)

Ln(x, y) = Ln(x, y + 1).

The generating function of ordinary cylinderical Bessel functions is

(3.7)

∞
∑

n=−∞

tnJn(x) = e
x
2 (t−

1
t ),

which are linked with the Tricomi function

(3.8) Jn(x) =
(x

2

)n

Cn

(

x2

4

)

.

To generate Hermite-Bessel function associated with the polynomialsHn(x, y, z;
τ1, τ2), we introduce the generating function

(3.9)

G(x, y, z; τ1, τ2; t) = exp
M̂

2

(

t− 1

t

)

(1)

= exp

(

x+ 2yτ1
∂
∂x + 3zτ2

∂2

∂x2

2

)

(

t− 1

t

)

(1).

By exploiting (3.9) and using already quoted decoupling procedure, we get
Hermite-Bessel function of three variables.

(3.10)

∞
∑

n=−∞

tn HJn(x, y, z; τ1, τ2) = e
x
2 (t−

1
t )+

yτ1
4 (t− 1

t )
2+

zτ2
8 (t− 1

t )
3

,

which satisfy the following properties

HJn(x, 0, 0; 1, 1) = Jn(x),
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and

(3.11)

∂

∂x
HJn(x, y, z; τ1, τ2) = nHJn−1(x, y, z; τ1, τ2),

∂

∂y
HJn(x, y, z; τ1, τ2) = n(n− 1)HJn−2(x, y, z; τ1, τ2),

∂

∂z
HJn(x, y, z; τ1, τ2) = n(n− 1)(n− 2)HJn−3(x, y, z; τ1, τ2).

Last three relations can be combined to get

∂

∂y
HJn(x, y, z; τ1, τ2) =

∂2

∂x2 HJn(x, y, z; τ1, τ2)

and
∂

∂z
HJn(x, y, z; τ1, τ2) =

∂3

∂x3 HJn(x, y, z; τ1, τ2),

which leads to the operational rule

(3.12) HJn(x, y, z; τ1, τ2) = eyτ1
∂2

∂x2 +zτ2
∂3

∂x3 Jn(x),

clearly for τ1 = τ2 = 1, reduce to the operational rule for HJn(x, y, z) as

(3.13) HJn(x, y, z) = ey
∂2

∂x2 +z ∂3

∂x3 Jn(x).

Laguerre-Bessel functions are also defined as

(3.14)

∞
∑

n=−∞

tn LJn(x, y) = exp
y

2

(

t− 1

t

)

C0

(

x

2
(t− 1

t
)

)

.

To obtain the generating relations for Hermite-Bessel and Lagurre Hermite
polynomials, we consider the relation [1]

(3.15)
∞
∑

n=0

Jn(t)
xn

n!
= J0

(

√

t2 − 2xt
)

,

and operating ey
∂2

∂x2 +z ∂3

∂x3 on both sides and using (3.13) and (2.8), we obtain
the following bilateral generating function

(3.16)

∞
∑

n=0

Hn(x, y, z)

n!
Jn(t) =H J0

(

√

t2 − 2xt, y, z
)

,

which according to (3.8) can be recast as

(3.17) HJ0

(

√

t2 − 2xt, y, z
)

=
∞
∑

n=0

Hn(x, y, z)t
n

n!
2−nCn

(

t2

4

)

.

Another example is provided by the relation [1]

(3.18) x sinx = 2

∞
∑

n=1

(2n)2J2n(x),
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by operating ey
∂2

∂x2 +z ∂3

∂x3 on both sides and using (3.13) and (2.8), we obtain

(3.19)

∞
∑

n=0

(−1)nH2n+2(x, y, z)

(2n+ 1)!
= 2

∞
∑

n=1

(2n)2HJ2n(x, y, z).

Further applying the above stated procedure for the relation [1]

(3.20) cos x = J0(x) + 2

∞
∑

n=1

(−1)nJ2n(x),

we obtain the following relation

(3.21)

∞
∑

n=0

(−1)nH2n(x, y, z)

(2n)!
=H J0(x, y, z) + 2

∞
∑

n=1

(−1)nHJ2n(x, y, z).

Consider the well known identity of Laguerre polynomial [1]

(3.22) exp(−ax) = 1

1 + a

∞
∑

n=0

(

a

a+ 1

)n

Ln(x),

now replacing x by x+2y ∂
∂x +3z ∂2

∂x2 and using the already quoted decoupling
formula we obtain

(3.23) exp(−ax+ a2y − a3z) =
1

1 + a

∞
∑

n=0

(

a

a+ 1

)n

HLn(x, y, z).

Again consider (3.22) and replace x by x2 and operating ey
∂2

∂x2 on both sides
and using identity

(3.24) ey
∂2

∂x2 exp(−ax2) =
1√

1 + 4ay
e(

−ax2

1+4ay ),

we obtain

(3.25)
1√

1 + 4ay
e(

−ax2

1+4ay ) =
1

1 + a

∞
∑

n=0

(

a

a+ 1

)n

ey
∂2

∂x2 C0(x
2t),

and

(3.26)
1√

1 + 4ay
e(

−ax2

1+4ay ) =
1

1 + a

∞
∑

n=0

(

a

a+ 1

)n

E0(x, y; t),

where left hand side is a generalization of Gleiser identity which can be put in
the following form also

(3.27)
1

2
√
πy

∫

∞

−∞

e−
(ax−t)2

4y =
1

1 + a

∞
∑

n=0

(

a

a+ 1

)n

E0(x, y; t).
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Again consider the identity (3.22) and operating exp(−y ∂
∂x x ∂

∂x ) both sides
and using identity (3.6) we obtain the following generalization

(3.28) exp(−ax+ ay) =
1

1 + a

∞
∑

n=0

(

a

a+ 1

)n

Ln(x, 1 + y).

By recalling the polynomials [10]

(3.29)

∞
∑

n=0

tn

n!
LHn(x, y; z) = exp[(y − D̂−1

x )t+ zt2],

where

LHn(x, y; z) =

[n/2]
∑

l=0

n!zsLn−2s(x, y)

(n− 2s)!s!

can be viewed as a Laguerre-Hermite polynomials and are quasi-monomials
under the action of

(3.30) M̂ = (y − D̂−1
x )− 2z(∂xx∂x), P̂ = −∂xx∂x,

which can be used to generate Burchnall identity [2] as

(3.31) LHn(x, y; z) = [(y − D̂−1
x )− 2z(∂xx∂x)]

n
,

or

(3.32) LHn(x, y; z) =

n
∑

s=0

(

n

s

)

(−1)s(∂xx∂x)s(2z)s LHn−s(x, y; z).

These polynomials can be exploited to derive bilateral generating relation by
replacing x by [(y− D̂−1

x )− 2z(∂xx∂x)] in (2.8) and using (3.32), we obtain the
following new identity relating to Laguerre-Hermite polynomials and Tricomi
function

exp(by − b2z)

n
∑

s=0

(

n

s

)

(−1)s(∂xx∂x)s(2z)s LHn−s(x, y + c; z)Cs(bx)(3.33)

=

∞
∑

l=0

ck−lLl
k−l(−bc) LHn(x, y; z).

Thus we conclude that the methods based on operational identities may
provide powerful tools to deal with the possibilities offered by generalized forms
of ordinary polynomials.
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