• 제목/요약/키워드: LQR control

검색결과 259건 처리시간 0.026초

강인한 최적 PID 제어기 설계를 위한 새로운 루프 형성 기법 (A New Loop Shaping Method for Design of Robust Optimal PID Controller)

  • 윤성오;서병설
    • 한국통신학회논문지
    • /
    • 제28권11C호
    • /
    • pp.1062-1069
    • /
    • 2003
  • 본 논문에서는 요구된 성능을 만족시키는 강인한 최적 PID 제어기 설계를 위한 새로운 루프 형성 기법을 제안 하고자 한다. 설계하고자 하는 PID 제어기의 영점들을 플랜트의 최대 극점에 근접하도록 가중치 요소 Q와 R을 선택하면 루프 형상이 고주파수 영역의 센서잡음 장벽으로부터 최대한 멀어지게 된다. 2차 시스템에 대하여 강인한 최적 PTD 제어기 설계가 가능한 새로운 루프 형성 기법은 LQR 방법에서 발전되었다.

진화전략과 신경회로망에 의한 능도 현가장치의 제어기 설계 (A Controller Design for Active Suspension System Using Evolution Strategy and Neural Network)

  • 김대준;천종민;전향식;최영규;김성신
    • 제어로봇시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.209-217
    • /
    • 2001
  • In this paper, we propose a linear quadratic regulator(LQR) controller design for the active suspension using evolution strategy(ES) and neural network. We can improve the inherent suspension problem, the trade-off between ride quality and suspension travel by selecting appropriate weight in the LQR-objective function. Since any definite rules for selecting weights do not exist, we replace the designers trial-and-error method with ES that is an optimization algorithm. Using the ES, we can find the proper control gains for selected frequencies, which have major effects on the vibrations of the vehicle. The relationship between the frequencies and proper control gains are generalized by use of the neural networks. When the vehicle is driven, the trained neural network is activated and provides the proper gains for operating frequencies. And we adopted double sky-hook control to protect car component when passing large bump. Effectiveness of our design has been shown compared to the conventional sky-hook controller through simulation studies.

  • PDF

A feasibility study on smart base isolation systems using magneto-rheological elastomers

  • Koo, Jeong-Hoi;Jang, Dong-Doo;Usman, Muhammad;Jung, Hyung-Jo
    • Structural Engineering and Mechanics
    • /
    • 제32권6호
    • /
    • pp.755-770
    • /
    • 2009
  • This study proposes a new smart base isolation system that employs Magneto-Rheological Elastomers (MREs), a class of smart materials whose elastic modulus or stiffness can be varied depending on the magnitude of an applied magnetic field. It also evaluates the dynamic performance of the MRE-based isolation system in reducing vibrations in structures subject to various seismic excitations. As controllable stiffness elements, MREs can increase the dynamic control bandwidth of the isolation system, improving its vibration reduction capability. To study the effectiveness of the MRE-based isolation system, this paper compares its dynamic performance in reducing vibration responses of a base-isolated single-story structure (i.e., 2DOF) with that of a conventional base-isolation system. Moreover, two control algorithms (linear quadratic regulator (LQR)-based control and state-switched control) are considered for regulating the stiffness of MREs. The simulation results show that the MRE-based isolation system outperformed the conventional system in suppressing the maximum base drift, acceleration, and displacement of the structure.

전기-기계식 능동 현가장치 제어를 위한 NCF 알고리즘 (The NCF Algorithm for the Control of an Electro-mechanical Active Suspension System)

  • 한인식;이윤복;최교준;김재용;장명언
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.1-9
    • /
    • 2012
  • The NCF control algorithm for an active suspension system was proposed and investigated. The NCF algorithm using spring dynamic variation force and suspension relative velocity was applied to the 1/4 vehicle model and numerical analysis was performed. Vehicle's performances such as vehicle displacement, vehicle acceleration, suspension deflection, tire deflection and absorbed power were calculated and compared with those of the passive, semi-active and LQR active suspension system that use full state feedback. Numerical results show that the proposed NCF active suspension system has superior performance compared with the passive and semi-active suspension system and has very similar performance compared with the LQR active suspension system. So the proposed NCF algorithm is considered as a highly practical algorithm because it requires only one displacement sensor in a 1/4 vehicle model.

모델 파라미터 없는 쿠프만 연산자 기반의 영구자석 동기전동기의 속도제어 (Model Parameter-free Velocity Control of Permanent Magnet Synchronous Motor based on Koopman Operator)

  • 김준식;우희진;최영진
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.308-313
    • /
    • 2022
  • This paper proposes a velocity control method for a permanent magnet synchronous motor (PMSM) based on the Koopman operator that does not require model parameter information except for pole-pair of the motor and external load. First, the Koopman operator is derived using observable functions and observation data. Then, the desired q-axis current corresponding to the desired velocity is generated using the relationship between the continuous-time Koopman operator and the dynamics of PMSM. Also, the dynamic equation of PMSM is expressed as a linear form in observable space using the discrete-time Koopman operator. Finally, it is applied to the linear quadratic regulator (LQR) to derive the final form of control input. To verify the proposed method, the conventional cascade PI controller and the LQR controller configured with the existing technique are compared with the proposed method in the viewpoint of q-axis current generation and velocity tracking performance in an environment with noise and external load.

가상 상태를 이용한 시간 지연 시스템의 슬라이딩 모드 제어 (Sliding Mode Control for Time-delay System using Virtual State)

  • 송영삼;권성하;박승규;오도창;정은태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.341-341
    • /
    • 2000
  • This paper presents a sliding mode control(SMC) design method for single input linear systems with uncertainties and time delay in the state. We define a sliding surface for the augmented system with a virtual state which is defined from the nominal system. We make a virtual state from optimal control input using LOR(Linear Quadratic Regulator) and the states of the nominal system. We construct a controller that combines SMC with optimal controller. The proposed sliding mode controller stabilizes on the overall closed-loop system.

  • PDF

An inverse LQG/LTR problem applied to the vehicle steering system

  • Park, Yong-Woon;Kim, Dae-Hyun;Scott, Kimbrough
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.324-327
    • /
    • 1996
  • This paper describes the robust controller design methods applied to the problem of an automatic system for tow-vehicle/trailer combinations. This study followed an inverse Linear Quadratic Regulator(LQR) approach which combines pole assignment methods with conventional LOR methods. It overcomes two concerns associated with these separate methods. It overcomes the robustness problems associated with pole placement methods and trial and error required in the application of the LQR problem. Moreover, a Kalman filter is used as the observer, but is modified by using the loop transfer recovery (LTR) technique with modified transmission zero assignment. The proposed inverse LQG,/LTR controllers enhances the forward motion stability and maneuverability of the combination vehicles. At high speeds, where the inherent yaw damping of the vehicle system decreases, the controller operates to maintain an adequate level of yaw damping. At backward moton, both 4WS (2WS tow-vehicle, 2WS trailer) and 6WS (4WS tow-vehicle, 2WS trailer) control laws are proposed by using inverse LQG/LTR method. To evaluate the stability and robustness of the proposed controllers, simulations for both forward and backward motion were conducted using a detailed nonlinear model. The proposed controllers are significantly more robust than the previous controllers and continues to operate effectively in spite of parameter perturbations that would cause previous controllers to enters limit cycles or to loose stability.

  • PDF

우주왕복선 액체로켓엔진 작동의 최적출력제어 시뮬레이션 (Optimal Output Feedback Control Simulation for the Operation of Space Shuttle Main Engine)

  • 차지형;고상호
    • 한국추진공학회지
    • /
    • 제20권3호
    • /
    • pp.37-53
    • /
    • 2016
  • 본 논문에서는 다단 연소방식의 액체로켓엔진인 우주왕복선 주 엔진(Space Shuttle Main Engine, SSME)의 제어 알고리즘을 다룬다. 이를 위해 SSME의 각 구성품들을 기준으로 크게 7가지 분류로 나누어 구성하여 수학적 모델링을 하였으며 순항상태 추력을 기준으로 Rated Propulsion Level (RPL)에 따른 정상상태 작동점을 구하였다. 폐루프 시스템을 위하여 순항상태인 RPL 104% 조건에서의 선형모델을 이용하여 최적 출력피드백 LQR 제어기 설계를 하였으며 시뮬레이션을 통해 제어기의 성능을 검증하였다.

M&S기법을 활용한 선박용 지향성 요동보상장치 성능 분석 (Performance Estimation for Shipboard Directional Pedestal by Using M&S Methodologies)

  • 이성균;고진용;한용수;김창환
    • 대한임베디드공학회논문지
    • /
    • 제13권6호
    • /
    • pp.297-303
    • /
    • 2018
  • Recently, the tasks assigned to surface ship are becoming diverse and important. In this trend, shipboard directional pedestals are widely used for surveillance and electronic warfare because ships are always under angular motion such as rolling, pitching and yawing. To estimate the performance of pedestal, the motion responses of vessel as well as mechanical characteristics of pedestal should be considered. In this study, both the motion responses of vessel which the pedestal will be mounted and the behavior of 3-axis pedestal are considered. Numerical analysis based on potential theory is used to obtained motion characteristics of vessel and then 6-DOF motions of vessel are simulated under operational condition. 1st-order time delay model and LQR control algorithm are used for modeling of pedestal drive model and control model, respectively. By using coordinate transform, the angular motions which the pedestal should compensate are calculated from the vessel's angular motion. Through these M&S methodologies, time history of pedestal behavior and maximum angular error of each pedestal axis are obtained. Overall M&S results show that 3-axis pedestal compensate the angular motion induced by vessel, efficiently.

X타 수중함의 유도·제어시스템 설계 (Design of Guidance and Control System for X-plane Submarine)

  • 박종용;유영준;전명준;윤현규
    • 대한조선학회논문집
    • /
    • 제59권5호
    • /
    • pp.306-313
    • /
    • 2022
  • Most submarines use the cross-plane, which is convenient and inexpensive, but the number of submarines equipped with an X-plane is increasing recently. This study focuses on designing the control system of the X-plane submarine with various control methods and analyzing the effect of each controller. First, a maneuvering simulation environment for a subjected submarine is established. The dynamics and the operating range of control surfaces are considered. Second, a depth and heading control system of the submarine, which can be divided into three parts, is designed: guidance, controller, and control allocation. The guidance system generates a smooth desired depth and heading. The controller is designed using Proportional-Integral-Differential (PID), Linear Quadratic Regulator (LQR), and H-infinity (H∞) control methods. A linear control allocation method is used to distribute control moment calculated by the controller to the control surfaces. Finally, the designed control system is applied to a subjected X-plane submarine, and a depth and heading control simulations are performed. Each control method is compared and analyzed under various simulation conditions.