X타 수중함의 유도·제어시스템 설계

박종용¹·유영준²·전명준³·윤현규^{3,†} 부경대학교 에너지수송시스템공학부 조선해양시스템공학전공¹ 울산대학교 조선해양공학부² 창원대학교 조선해양공학과³

Design of Guidance and Control System for X-plane Submarine

Jong-Yong Park¹·Youngjun You²·Myungjun Jeon³·Hyeon-Kyu Yoon^{3,†} Department of Naval Architecture and Marine System Engineering, Pukyong National University¹ School of Naval Architecture and Ocean Engineering, University of Ulsan² Department of Naval Architecture and Marine Engineering, Changwon National University³

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Most submarines use the cross-plane, which is convenient and inexpensive, but the number of submarines equipped with an X-plane is increasing recently. This study focuses on designing the control system of the X-plane submarine with various control methods and analyzing the effect of each controller. First, a maneuvering simulation environment for a subjected submarine is established. The dynamics and the operating range of control surfaces are considered. Second, a depth and heading control system of the submarine, which can be divided into three parts, is designed: guidance, controller, and control allocation. The guidance system generates a smooth desired depth and heading. The controller is designed using Proportional–Integral–Differential (PID), Linear Quadratic Regulator (LQR), and H–infinity (H ∞) control methods. A linear control allocation method is used to distribute control moment calculated by the controller to the control surfaces. Finally, the designed control system is applied to a subjected X–plane submarine, and a depth and heading control simulations are performed. Each control method is compared and analyzed under various simulation conditions.

Keywords : X-plane submarine(X타 수중함), Proportional-Integral-Differential control(PID 제어), Linear Quadratic Regulator control(LQR 제어), H-infinity control(H∞ 제어), Control allocation(제어할당)

1. 서 론

수중함은 잠항, 부상, 선회 등의 3차원 기동을 위해 선수·선미 제어판을 사용한다. 선미 제어판은 수중함의 조종성을 결정하는 중요한 역할을 하며, 그 형상에 따라 +타와 X타로 구분할 수 있 다. +타는 선미의 직교 구성을 갖는 수직·수평타를 사용하여 수 중함을 직관적으로 조종하기 편리하고, 제작비용이 저렴하여 대 부분의 수중함에 적용되고 있다. X타 수중함은 선미에 4개의 동 일한 면적을 갖는 제어판으로 구성되어 있으며, 각 제어판을 독 립적으로 운용할 수 있다. 일부 제어판이 재밍(jamming) 등의 현 상으로 작동하지 않더라도, 조작 가능한 제어판을 이용해 조종성 을 확보할 수 있다. X타 제어판은 +타형에 비해 상대적으로 더 큰 종횡비(aspect ratio)를 확보할 수 있기 때문에, 상대적으로 더 나은 조종성을 갖는 것으로 알려져 있다 (Renilson, 2015; Feng et al., 2015; Dubbioso et al., 2017; Suastika et al., 2018). 이 러한 장점을 바탕으로 X타는 독일의 U212급, 일본의 Soryu급 수 중함에 적용되고 있으며, AUV(autonomous unmmand vehicle)의 제어판으로도 활용되는 추세이나 (Zhang et al., 2017; Nakamura and Hyakudome, 2019), X타 수중함의 유도·제어시 스템 설계에 대하여 기 발표된 연구는 드문 상황이다.

본 연구는 3가지 제어기법으로 X타 수중함 유도·제어시스템을 설계하고, 시뮬레이션 기반 성능검증 및 비교분석을 목표로 한다. 이를 위해, 운동방정식 및 유체력 미계수가 공개된 수중함을 대 상으로 시뮬레이션 환경을 구축하였다. 시뮬레이션의 현실성을 보완하기 위해 제어판의 동역학 및 운용범위를 고려하였다. 심도 및 침로를 제어하기 위한 시스템은 유도 알고리즘과 제어기로 구 분하였다. 과도한 타의 작동을 방지하기 위하여 명령을 평활화 (smoothing)하는 유도 알고리즘을 설계하였다. 제어기는 PID, LQR, H∞ 기법으로 설계하였다. 제어기에서 출력된 힘을 구현하 기 위한 X타 각도는 제어할당기법을 통하여 산출하였다. 총 4개 속도에 대한 심도·침로 변경 시뮬레이션을 수행하였고, 그 성능을 비교·검증하였다.

2. 대상 수중함 및 제어판 동역학

2.1 대상 수중함

본 시뮬레이션 연구의 대상 수중함은 Thuné (2015)의 학위논 문에 형상, 주요제원, 6자유도 동역학의 유체력 미계수, +/X타의 운용개념 등이 공개된 1,900톤급 수중함으로 결정하였다. 대상 수중함의 일반배치도는 Fig. 1, 주요 제원은 Table 1과 같다.

Fig. 1 General arrangement (Thuné, 2015)

Table 1 Principal dimensions of t	the	submarine
-----------------------------------	-----	-----------

ltem		Value
Length overall	m	62.329
Displacement	m^3	1942.3
Beam	m	6.2
Height	m	11.925
Propeller diameter	m	6.897

2.2 제어판 운용조건 및 구동특성

선회, 침로변경 등 수평면 운동을 위한 X타와 +타의 운용개념 차이는 Fig. 2와 같이 도시할 수 있다.

그림 Fig. 2에서 확인할 수 있듯, 수평면 운동 상황에서 +타 시스템은 1·3번 제어판만 작동하고, X타 시스템은 1·2·3·4번 제 어판 모두 작동한다. 수직면 운동 상황에서 +타 시스템은 2·4번 제어판만 조작하고, X타 시스템은 1·2·3·4번 제어판 모두 작동한 다. 본 연구에서는 X타 시스템의 1·2·3·4번 제어판 모두 선미 제 어판(stern plane)의 의미로 통칭하고, 그 각도는 각각 δ_1 , δ_2 , δ_3 , δ_4 로 표기한다. 수중함의 제어판 운용범위는 속도별로 달라 진다. 함수 제어판 및 함미 제어판(X타)의 운용범위는 Table 2와 같이 명령속도 U_c 의 함수로 표현하여 시뮬레이션에 적용하였다.

Fig. 2 The + and X-configuration stern hydroplane (Thuné, 2015)

	Table	2	Operation	condition	of	control	surface
--	-------	---	-----------	-----------	----	---------	---------

	Angle sa	aturation
Speed range	Bow plane	Stern plane
	[deg]	[deg]
$U_c < 5kts$	25	40
$5kts \leq U_c < 15kts$	$(-1.9U_{c}+34.5)$	$(-3U_{c}+55)$
$15kts \leq U_c < 20kts$	$(-0.4 U_{c} + 12)$	$(-0.8 U_{c} + 22)$
$20kts \leq U_c$	4	6

제어판의 구동 특성은 식 (1)과 같은 1차지연시스템이라 기정 하였다.

$$\delta = \frac{1}{T_s s + 1} \delta_c \tag{1}$$

여기서, δ 는 함수 수평타 및 함미 제어판 각도를 통칭하는 의미 의 기호이고, δ_c 는 명령 제어판각, T_s 는 시정수(time constant)를 의미한다. 본 연구에서 시정수 T_s 는 2로 설정하였다. 함수 수평 타의 최대 각속도는 3.85 °/sec, 함미 제어판의 최대 각속도는 3.33 °/sec로 가정하였다.

3. 제어시스템 설계

3.1 유도 알고리즘

수중함의 심도·침로 변경 시, 과도한 명령이 입력되면 과도한 타기 사용, 오버슈트(overshoot) 등의 문제가 발생할 수 있다. 따 라서 수중함의 동역학으로 추종 가능한 심도·침로의 이력을 생성 하고, 이를 기반으로 제어시스템에 입력되는 오차(error)를 생성 하는 것이 합리적이다. 본 연구에서는 식 (2), 식 (3)과 같은 2차 지연시스템으로 추종심도(desired depth) 및 추종침로(desired heading)를 생성하였다.

$$z_d = \frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2} z_c \tag{2}$$

$$\psi_d = \frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2}\psi_c \tag{3}$$

여기서 z_c , z_d , ψ_c , ψ_d 는 각각 명령심도, 추종심도, 명령침로, 추 종침로를 의미한다. ζ 와 ω_n 는 2차지연시스템의 특성을 결정하는 상수인 감쇠비(damping ratio) 및 고유주파수(Natural frequency) 를 의미한다. 본 연구에서는 추종심도생성의 ζ , ω_n 는 각각 0.9, 0.07을 적용하고, 추종침로생성의 ζ , ω_n 는 각각 0.9, 0.2를 적용 하였다. 식 (2), 식 (3)으로 추종심도와 추종침로가 도출되는 과 정에서 수중함 동역학을 고려하기 위하여 "변화율"의 제약을 식 (4), 식 (5)와 같이 설정하였다.

$$\dot{z}_d \le U_c \sin(\theta_{\max})$$
 (4)

$$\dot{\psi}_d \le \frac{N_{\delta r}}{\left(N_r - mx_G\right)} \delta_{\max} \tag{5}$$

식 (4)에서 θ_{max} 는 수중함 운용에서 허용가능한 최대종동요각 을 의미한다. 본 연구에서는 저속인 5kts 이하에서는 12°, 5kts 초과 시 7°로 설정하였다. δ_{max} 는 선미 제어판 최대각으로 Table 2에 표기한 바와 같이 명령속도에 따라 변한다. 식 (5)는 선수동 요(yaw) 운동의 정상상태를 가정한 후 선수동요 각속도로 수식을 정리해 도출하였다. 위의 알고리즘을 바탕으로 생성된 추종심도· 추종침로 궤적의 예를 그래프로 표현하면 Fig. 3과 같다.

Fig. 3 Desired depth and heading angle generated by guidance algorithm

3.2 PID 제어기 설계

수중함의 심도변경은 일반적으로 함수 수평타 및 함미 제어판 조작으로 발생하는 종동요(pitch) 운동을 이용하여 수행된다. 본 연구에서는 PID 제어 알고리즘을 이중루프(double loop)로 구성 하였다 (Park et al., 2016). 외부루프(outer loop) 제어기는 식 (6)과 같이 심도의 오차를 되먹임(feedback)하여 수중함이 추종 해야 할 명령 종동요각(command pitch angle) θ_c 를 출력해준다.

$$\theta_c = K_{p,z}\tilde{z} + K_{i,z}\int \tilde{z}dt + K_{d,z}\tilde{z}$$
(6)

여기서, \tilde{z} 는 심도 오차를 의미하며, $\tilde{z} = z - z_d$ 로 표현할 수 있다. $K_{p,z}$, $K_{i,z}$, $K_{d,z}$ 는 각각 외부루프 명령종동요각 생성 알고리 즉의 비례이득, 적분이득, 미분이득이다. 명령종동요각은 추종심도/추종침로 생성 알고리즘과 동일한 방법으로 식 (7)과 같이 추종종동요각(desired pitch angle) θ_d 로 성형(reshaping) 된다.

$$\theta_d = \frac{1}{s^2 + 2\zeta_z \omega_{n,z} s + \omega_{n,z}^2} \theta_c \tag{7}$$

여기서, ζ_z와 ω_{n,z}는 외부루프 추종동동요각 생성 알고리즘의 감 쇠비및 고유주파수를 의미하며, 본 연구에서는 각각 0.5, 0.9로 결정하였다. 내부루프(inner loop) 제어기는 수중함의 종동요각 θ 가 추종종동요각 θ_d을 추종하기 위한 함수 수평타각 및 함미 제 어판각을 계산한다. 종동요 운동방정식을 단순화하면 식 (8)과 같 이 표현할 수 있다.

$$\left(I_{yy} - M_{\dot{q}}\right)\ddot{\theta} = M_{\dot{q}}\dot{\theta} + \Delta(\boldsymbol{x}, \boldsymbol{u}) + v_{\theta}$$
(8)

여기서, v_{θ} 는 의사제어(pseudo control)을 의미하며, 해당 방정 식에서 제어력을 낼 수 있는 함수 수평타와 함미 제어판 관련 항 으로 생각해도 무방하다. $\Delta(\mathbf{x}, \mathbf{u})$ 는 종동요 운동방정식인 식 (8)에 표현되지 않은 모든 항을 포괄적으로 표현한 항으로, 일반 적으로 모델링 불확실성(modeling uncertainty)를 표현할 때 사용 하는 기호이다. $\Delta(\mathbf{x}, \mathbf{u})$ 를 무시할 수 있다고 가정하고, 의사제 어 v_{θ} 를 식 (9)와 같이 설정하면, 식 (8)은 식 (10)과 같이 정리할 수 있다.

$$y_{\theta} = \left(I_{yy} - M_{q}\right) \left(\ddot{\theta}_{d} - \frac{M_{q}}{\left(I_{yy} - M_{q}\right)}\dot{\theta} + K_{p,\theta}\tilde{\theta} + K_{i,\theta}\int\tilde{\theta}dt + K_{d,\theta}\dot{\tilde{\theta}}\right)$$
(9)

$$\ddot{\tilde{\theta}} + K_{d,\theta}\dot{\tilde{\theta}} + K_{p,\theta}\tilde{\theta} + K_{i,\theta}\int\tilde{\theta}\,dt = 0$$
(10)

여기서, $\tilde{\theta}$ 는 종동요 오차를 의미하며, $\tilde{\theta} = \theta_d - \theta \leq 표현할 수 있$ $다. <math>K_{p,\theta}$, $K_{i,\theta}$, $K_{d,\theta}$ 를 적절하게 결정하면 식 (10)의 종동요 오 차는 0에 수렴하게 되고, 이는 수중함의 종동요가 추종종동요 각을 추종하게 됨을 의미한다. 의사제어 v_{θ} 는 식 (11)과 같은 방법으로 함수 수평타 및 함미 제어판에 할당(control allocation) 되었다.

$$\left[\delta_{b_{c}}\delta_{1_{c}}\delta_{2_{c}}\delta_{3_{c}}\delta_{4_{c}}\right]^{T} = \left[M_{\delta_{b}}'M_{\delta_{1}}'M_{\delta_{2}}'M_{\delta_{3}}'M_{\delta_{4}}'\right]^{+}\frac{v_{\theta}}{u^{2}}$$
(11)

여기서, 윗첨자 "+"은 의사역행렬(psuedo inverse)를 의미한다. 하첨자 "c"는 제어판 각의 명령임을 의미한다. 침로제어기는 식 (9), 식 (10)과 같은 방법으로 설계하여 식 (12)로 표현할 수 있다.

$$\upsilon_{\psi} = \left(I_{zz} - N_{\dot{r}}\right) \left(\ddot{\psi}_d - \frac{N_r}{\left(I_{zz} - N_{\dot{r}}\right)}\dot{\psi} + K_{p,\psi}\tilde{\psi} + K_{i,\psi}\int\tilde{\psi}dt + K_{d,\psi}\dot{\tilde{\psi}}\right) (12)$$

산출된 의사제어 v_{ψ} 는 식 (13)과 같은 방법으로 함수 수평타 및 함미 제어판에 할당되었다.

$$\left[\delta_{1_{c}}\delta_{2_{c}}\delta_{3_{c}}\delta_{4_{c}}\right]^{T} = \left[N_{\delta_{1}}'N_{\delta_{2}}'N_{\delta_{3}}'N_{\delta_{4}}'\right]^{+} \frac{v_{\psi}}{u^{2}}$$
(13)

수직면 제어를 위해 식 (11)과 같이 계산된 선미 제어판 각도 명령 값, 그리고 수평면 제어를 위해 식 (13)과 같이 계산된 제어 판 각도 명령 값이 더해져 최종적인 선미 제어판 각도 명령 값이 생성된다. 본 연구에서 사용된 PID 제어 시뮬레이션에 사용된 제 어이득을 정리하면 Table 3과 같다.

I	able	3	PID	control	gain	

	Speed					
	5kts	10kts	15kts	20kts		
$K_{p,z}$		0.0	25			
$K_{d,z}$		0.1	15			
$K_{\!i,z}$		0.01				
$K_{p, heta}$	2	2	2	2		
$K_{\!d, heta}$	40	20	20	20		
$K_{\!i, heta}$	0.001	0.001	0.001	0.001		
$K_{p,\psi}$	0.01	0.02	0.04	0.04		
$K_{d,\psi}$	0.3	0.5	5	20		
$K_{\!i,\psi}$	0	0	0	0		

3.3 LQR 제어기 설계

LQR(linear quadratic regulator) 제어는 주어진 시스템의 상태 방정식을 위배하지 않으면서 최적기준(optimality criterion)을 만 족시키는 제어법칙을 찾는 것을 목표로 하는 기법이다. LQR은 선형 시불변 시스템(linear time invariant system)에 초기시간 t_i 는 0으로, 최종시간 t_f 는 무한대로 가정한다. 상태방정식과 가격 함수는 식 (14), 식 (15)와 같이 표현할 수 있다.

 $\dot{\boldsymbol{x}} = A\boldsymbol{x} + B\boldsymbol{u} \tag{14}$

$$J = \int_{0}^{\infty} \left[\boldsymbol{x}^{T} Q \boldsymbol{x} + \boldsymbol{u}^{T} R \boldsymbol{u} \right] dt$$
(15)

여기서, *J*는 평가함수(performance index function)를 의미한다. *Q*와 *R*은 대칭행렬로서 *Q* ≥ 0, *R* > 0로 주어지며, 각각 상태 *x* 와 제어입력 *u* 의 크기에 대한 가중행렬(weighted matrix)를 나 타낸다. LQR은 식 (14)에 표현된 상태방정식을 구속조건으로 가 지면서 식 (15)의 평가함수를 최소화하는 제어법칙을 찾는 문제이 다. 유일한 최적제어가 존재하고 실시간에서 모든 상태변수가 관 측 가능하다면, 최적제어법칙은 식 (16)과 같은 형태로 표현된다.

$$\boldsymbol{u} = -K\boldsymbol{x}, \ K = -R^{-1}B^T P \tag{16}$$

여기서, P는 양의 반한정(positive semi-definite) 행렬로 식 (17) 에 표현된 Riccati식의 유일한 해이다.

$$PA + A^{T}P + Q - PBR^{-1}B^{T}P = 0$$
(17)

LQR 제어기법을 적용하기 위해서는 운동모형의 선형화가 필 요하다. 심도제어기를 설계하기 위해서 수직면 운동을 선형화하 여 식 (18)과 같은 형태로 상태방정식을 구성하였다. 센서로 직접 계측할 수 없는 상하동요 w는 제어를 위한 되먹임으로의 사용이 부적절하다 판단하여 상태방정식에서 제외하였다.

$$\begin{split} \vec{q} \\ \vec{q} \\ \vec{z} \end{bmatrix} &= A_v \begin{bmatrix} q \\ \theta \\ z \end{bmatrix} + B_v v_\theta \end{split} \tag{18}$$
where, $A_v &= \begin{bmatrix} (I_{yy} - M_q) 0 0 \\ 0 & 1 0 \\ 0 & 0 1 \end{bmatrix}^{-1} \begin{bmatrix} (M_q - mx_g)u - mg(z_g - z_b) 0 \\ 1 & 0 & 0 \\ 0 & -U & 0 \end{bmatrix}$
, $B_v &= \begin{bmatrix} (I_{yy} - M_q) 0 0 \\ 0 & 1 0 \\ 0 & 0 1 \end{bmatrix}^{-1} \begin{bmatrix} u^2 \\ 0 \\ 0 \end{bmatrix}$

행렬 A_v , B_v 의 하첨자 'V'는 수직면 관련 행렬임을 표현하기 위해 도입하였다. 동일한 방법으로 수평면 운동에 대한 선형 상 태방정식을 구성하면 식 (19)와 같다.

$$\begin{bmatrix} \dot{r} \\ \dot{\psi} \end{bmatrix} = A_h \begin{bmatrix} r \\ \psi \end{bmatrix} + B_h v_{\psi}$$
(19)
where, $A_h = \begin{bmatrix} (I_{zz} - N_r) 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} (N_r - mx_g) u 0 \\ 1 & 0 \end{bmatrix}$
, $B_h = \begin{bmatrix} (I_{zz} - N_r) 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} u^2 \\ 0 \end{bmatrix}$

행렬 A_h , B_h 의 하첨자 'h'는 수평면 관련 행렬임을 명시하기 위해 도입하였다. 식 (18), 식 (19)와 같이 구성된 행렬과, 기중 행렬 Q와 R이 결정되면 식 (17)에 표현된 Riccati식을 풀어 행 렬 를 구하고, 식 (16)을 이용하여 제어입력 u를 결정하게 된다. 이때, 제어입력 u는 식 (9)와 식 (12)에 표현된 의사제어 v_{θ} , v_{ψ} 와 같은 차원을 갖기 때문에 식 (11)과 식 (13)에 표현된 제어할

X타 수중함의 유도·제어시스템 설계

당 방법과 동일한 방식으로 명령 제어판 각도를 산출할 수 있다. 본 연구에서 사용된 LQR 제어 가중행렬 및 계산된 제어이득을 정리하면 Table 4와 같다.

Table 4 LQR weighted matrix

	Vertical	Horizontal
Q	$\begin{bmatrix} 1^* \frac{\pi}{180} 0 & 0 & 0 \\ 0 & 1^* \frac{\pi}{180} & 0 \\ 0 & 0 & \frac{1}{10} \end{bmatrix}$	$\begin{bmatrix} 1000^* \frac{\pi}{180} & 0\\ 0 & 0.5^* \frac{\pi}{180} \end{bmatrix}$
R	$\frac{1}{1E+9}$	$\frac{1}{5E+13}$

3.4 H∞ 제어기 설계

본 장의 이론설명은 Choi (2012)의 서적을 참고하여 작성되었 다. 시스템에 현저한 불확실성이 존재하지만, 전체 시스템이 바 람직한 성능특성을 유지하는 경우, 이러한 시스템을 강건제어 (robust control) 시스템이라고 한다. H∞제어는 강건제어기법 중 하나로, 그 설계를 위해 Fig. 4와 같은 투포트 블록선도(two-port block diagram)를 도입한다.

Fig. 4 Two-port block diagram

블록선도는 제어대상과 제어기의 두 블록으로 구성되어 있으 며, 제어대상은 두 개의 입력과 두 개의 출력을 가지고 있다. 두 개의 입력은 외생신호입력(exogenous input)과 제어입력(control input)으로 각각 구분된다. 외생신호입력 \vec{w} 는 실제적으로 외부 에서 들어가는 신호(명령, 외란 및 잡음 등)의 집합이며, 제어입 력 \vec{u} 는 제어기로부터 나오는 신호로서 제어대상에 직접 작용하 여 원하는 출력을 만들어 내게 된다. \vec{u} 로서 외생신호 \vec{w} 를 직접 조정할 수 없다는 점에서 두 신호를 구별할 수 있다. 제어대상의 출력 역시 두 그룹으로 분류할 수 있는데, 첫 번째 그룹인 \vec{z} 는 제어되는 양(제어량)으로서, 제어입력 \vec{u} 로 제어하고자 하는 신호 를 포함하고 있다. 두 번째 그룹인 \vec{y} 는 제어대상에서 센서 등을 이용하여 관측되는 실제 출력을 나타내는 신호로서 제어기의 출 력인 \vec{u} 의 생성에 기여하게 된다. 이와 같은 투포트블록선도에 대 한 전달함수 표현식은 식 (20)과 같다.

$$\begin{bmatrix} \vec{z}(s) \\ \vec{y}(s) \end{bmatrix} = P(s) \begin{bmatrix} \vec{w}(s) \\ \vec{u}(s) \end{bmatrix} = \begin{vmatrix} P_{11}(s) & P_{12}(s) \\ P_{21}(s) & P_{22}(s) \end{vmatrix} \begin{bmatrix} \vec{w}(s) \\ \vec{u}(s) \end{bmatrix}$$
(20)
where, $\vec{u}(s) = K(s)\vec{y}(s)$

여기서, P(s)는 제어대상과 구별하기 위하여 일반화 제어대상 (generalized plant)이라 불린다. 식 (20)으로부터 제어출력 \vec{z} 와 외생신호입력 \vec{w} 사이의 폐루프전달함수는 식 (21)과 같이 표현할 수 있다.

$$\vec{z}(s) = \left[P_{11} + P_{12} K (I - P_{22} K)^{-1} P_{21} \right] \vec{w}(s) \equiv \Phi_{zw} \vec{w}(s)$$
(21)

식 (21)과 같은 폐루프전달함수 Φ_{zw} 의 형식을 선형분수변환 (linear fractional transformation)이라 부른다. 투포트블록선도의 상태방정식 표현은 식 (22)와 같다.

$$\vec{x} = \vec{Ax} + \vec{B_1 w} + \vec{B_2 u}$$

$$\vec{z} = \vec{C_1 x} + \vec{D_{11} w} + \vec{D_{12} u}$$

$$\vec{y} = \vec{C_2 x} + \vec{D_{21} w} + \vec{D_{22} u}$$
(22)

식 (22)의 상태방정식 표현을 압축행렬 형식을 이용하면 식 (23)과 같이 표현할 수 있다.

$$P(s) = \begin{bmatrix} A : B_1 & B_2 \\ \dots & \dots & \dots \\ C_1 : D_{11} & D_{12} \\ C_2 : D_{21} & D_{22} \end{bmatrix}$$
(23)

H∞제어란 식 (20)에 표현된 시스템에 대하여, 제어기 K(s)를 이용하여 식 (21)로 구성한 폐루프전달함수 Φ_{zw} 의 H∞ norm 을 최소로 하는 제어기 를 도출하는 문제로 생각할 수 있다. 이 때, 의 H∞ norm이란 식 (24)를 의미한다.

$$\| \boldsymbol{\Phi}_{zw} \|_{\infty} = \frac{\max}{\omega} \left| \boldsymbol{\Phi}_{zw}(j\omega) \right| \tag{24}$$

본 연구의 H∞ 심도제어의 블록선도는 Fig. 5와 같다.

Fig. 5 \mbox{H}^∞ block diagram of depth control

심도제어 문제에서 제어량 z_1 , z_2 , z_3 은 각각 심도오차, 선수 수평타각, 선미 수평타각으로 설정하였다. 수직면 동역학을 의미 하는 플랜트 G는 LQR제어에서 구성한 바와 동일하다. 외생신호 입력은 추종심도로 설정하였다. 시뮬레이션 시행착오를 거쳐 설 정된 가중함수 W_e , $W_{\delta s}$, $W_{\delta s}$ 를 정리하면 Table 5와 같다.

Table 5 $\mbox{H}\infty$ weighted function of vertical motion

	Speed					
	5kts	10kts	15kts	20kts		
W_{e}	$\frac{1200}{1000s+1}$	$\frac{600}{1000s \pm 1}$	$\frac{300}{1000s \pm 1}$	$\frac{250}{1000s \pm 1}$		
$W_{\delta b}$	1000					
$W_{\delta s}$	100					

심도제어와 유사한 방법으로 구성한 H∞ 침로제어의 블록선도 는 Fig. 6과 같다.

Fig. 6 $\ensuremath{\mathsf{H}^\infty}$ block diagram of heading control

침로제어 문제에서 제어량 z_1 , z_2 는 Fig. 6과 같이 각각 침로 오차, 선미 수직타각으로 선정하였다. 수평면 동역학을 의미하는 플랜트 는 LQR제어에서 구성한 바와 동일하다. 외생신호입력은 추종침로로 설정하였다. 시뮬레이션 시행착오를 거쳐 설정된 가 중함수 W_e , $W_{\delta r}$ 을 정리하면 Table 6과 같다.

Table 6 H $^\infty$ weighted function of horizontal	al motion
---	-----------

	Speed				
	5kts	10kts	15kts	20kts	
W_{e}	$\frac{1}{2000s+1}$				
$W_{\delta r}$	$\frac{2s}{s+25}$	$\frac{1.5s}{s+25}$	$\frac{0.1s}{s+25}$	$\frac{0.1s}{s+25}$	

4. 제어 시뮬레이션

시뮬레이션은 4가지 속력(5, 10, 15, 20 knots)에 대하여 수행 되었다. 초기심도 및 초기침로가 각각 50 m, 0 deg인 상황에서 입력된 명령심도 및 명령침로를 추종하는지 확인하였다. 시뮬레 이션 조건을 정리하면 Table 7과 같다.

Table	7	Simulation	condition	

ltem		Value
Control method	-	PID, LQR, H∞
Speed	kts	5, 10, 15, 20
Initial depth	m	50
Command depth	m	100
Initial heading	deg	0
Command heading	deg	30

제어 시뮬레이션 결과를 도시하면 Fig. 7 ~ Fig. 10과 같다.

Fig. 7 Control performance comparison (5kts)

Fig. 9 Control performance comparison (15 kts)

제어성능을 정량적으로 비교하기 위하여 오버슈트, 상승시간 (rise time), 정정시간(settling time), 제어효율(control effort)을 산출하였다. 제어효율은 시뮬레이션 동안 사용된 제어판 각도의

X타 수중함의 유도·제어시스템 설계

Fig. 10 Control performance comparison (20 kts)

실효값(root mean square, RMS)으로 판단하였다. 계산된 제어성 능 파라미터를 정리하면 Table 8과 같다.

수치적인 측면에서 제어기 간 성능의 차이는 일정한 경향을 보 이진 않는다. 다만 PID 및 H∞은 목표 심도 및 침로 부근에서의 불필요한 진동이 보이지만 LQR은 상대적으로 완만하게 명령을 추종하는 모습을 보인다. 제어효율 측면에서 LQR이 다른 제어기 법들에 비해 우수한 것을 알 수 있다. 이는, 정량적으로 산출한 제어 효율 RMS 값뿐 아니라 제어 시뮬레이션 결과의 시계열을 보면 명확히 알 수 있다. LQR은 다른 제어기법에 비해 제어판의 조작이 매끄러운 것을 확인할 수 있다. 또한, LQR은 속도에 따른 제어이득 조정이 필요 없었기 때문에 제어기 설계가 수월하였다. 본 연구에서는 제어이득 조정 및 성능에서 LQR이 3가지 제어기 법 중 최적이라 판단하였다.

5. 결 론

본 연구에서는 X타 수중함의 유도·제어시스템의 성능을 확인 할 수 있는 시뮬레이션 환경이 구축하였다. 과도한 타기의 사용 을 방지하기 위하여 명령을 평활화 할 수 있는 유도 알고리즘이 작성하였다. 수중함의 운동 방정식을 이용한 PID, LQR, H∞ 기 법을 이용한 제어기 설계를 수행하였다. 케이스 스터디를 바탕으 로 도출한 결론을 정리하면 다음과 같다. 첫째, 사용된 제어기법 은 X타 수중함의 심도·침로 제어 문제에 적합하다. 저속 영역에서 제어기 간 성능이 차이가 보이지만, 결과적으로 3가지 기법 모두 유도 알고리즘에서 출력된 명령을 잘 추종하는 것을 확인할 수 있다. 둘째, H∞기법은 제어이득 뿐 아니라 가중함수 구조 자체 도 결정해야 하므로 제어기 설계가 상대적으로 용이하지 않았다. 충분한 제어성능을 확보하기 위해서는 제어이득조정이 필수적이 기 때문에, 실제 수중함 문제에서는 우선 PID 혹은 LQR기법으로 접근하고 이를 정교화 하는 방향으로 시스템을 설계하는 것이 현 실적이라 판단된다.

본 연구의 한계는 다음과 같다. 첫째, 본 연구 결과는 시뮬레 이션을 기반으로 수행되었기 때문에, 실제 수중함에 대한 재현성 은 보장할 수 없다. 둘째, 본 연구의 제어이득은 시행착오(trial and error)로 도출되었기 때문에, 제어이득조정 결과에 따라서 제 어기의 성능이 상이할 수 있다.

후 기

이 논문은 부경대학교 자율창의학술연구비(2020년)에 의하여 연구되었음

Speed	Control method	Depth control			Course control			control
		Overshoot [m]	Rise time [sec]	Settling time [sec]	Overshoot [deg]	Rise time [sec]	Settling time [sec]	efficiency [RMS]
5 knots	PID	7.64E-01	1.08E+02	1.50E+02	4.33E-04	2.88E+01	7.29E+01	3.46E+01
	LQR	1.14E+00	8.58E+01	1.53E+02	6.64E-01	2.78E+01	4.46E+01	2.48E+01
	H∞	2.45E+00	6.62E+01	1.18E+02	8.12E-01	2.08E+01	3.41E+01	3.81E+01
10 knots	PID	5.15E-01	7.10E+01	9.71E+01	8.94E-02	1.55E+01	2.85E+01	1.23E+01
	LQR	1.35E-01	6.26E+01	1.04E+02	0.00E+00	2.06E+01	4.49E+01	8.99E+00
	H∞	2.23E+00	5.97E+01	9.60E+01	4.76E-01	1.53E+01	2.43E+01	1.17E+01
15 knots	PID	1.14E-01	4.54E+01	6.68E+01	8.48E-02	2.79E+01	3.97E+01	4.78E+00
	LQR	4.97E-02	4.63E+01	7.95E+01	0.00E+00	2.89E+01	4.10E+01	3.45E+00
	H∞	1.03E+00	4.91E+01	8.21E+01	6.03E-02	2.71E+01	3.85E+01	4.53E+00
20 knots	PID	1.09E-01	3.53E+01	6.63E+01	3.70E-01	3.48E+01	4.58E+01	2.78E+00
	LQR	8.17E-02	4.05E+01	6.80E+01	3.42E-02	3.56E+01	4.79E+01	2.24E+00
	H∞	1.10E+00	4.25E+01	7.16E+01	3.10E-02	3.53E+01	4.73E+01	2.78E+00

Table 8 Control performance index

References

- Choi, Y., 2012. *Modern Control Engineering: Understanding of the State–Space Representation*. Hongrung.
- Dubbioso, G., Broglia, R. and Zaghi, S., 2017. CFD analysis of turning abilities of a submarine model. *Ocean engineering*, 129, pp.459–479.
- Feng, D., Wang, X., Jiang, F. and Zhang, Z., 2015. Large eddy simulation of DARPA SUBOFF for Re= 2.65× 107. *Proceedings of the Eighth International Workshop on Ship Hydrodynamics*, Seoul, Republic of Korea, 23–25 September 2013.
- Nakamura, M. and Hyakudome, T., 2015. Motion simulations of AUV "YUMEIRUKA" with X-plane. *The 29th International Ocean and Polar Engineering Conference*, Honolulu, Hawaii, USA, June 2019.
- Renilson, M., 2015. Submarine Hydrodynamics. Springer.
- Park, J.Y., Kim, N., Yoon, H.K. and Cho, H., 2016 Adaptive depth controller design for a submerged body moving near free surface. *Applied Ocean Research*, 58, pp.83–94.
- Suastika, K., Virliani, P. and Wasis, D. A., 2018. Submarine rudder stern-plane configuration for optimum manoeuvring. *International Seminar on Ocean and Coastal Engineering, Environmental and Natural Disaster Management*, Surabaya, Indonesia, November 8, 2017.

- Thuné, S., 2015. *Simulation of submarine manoeuvring.* Royal Institute of Technology, Sweden.
- Zhang, Y., Li, Y., Zhang, G., Zeng, J. and Wan, L., 2017. Design of X-rudder autonomous underwater vehicle's quadruple-rudder allocation with Lévy flight character. *International Journal of Advanced Robotic Systems*, 14(6), pp.1–15.

