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Abstracts  This paper describes the robust controller design methods applied to the problem of an automatic  steering system for
tow-vehicle/trailer combinations. This study followed an inverse Linear Quadratic Regulator(LQR) approach which combines pole
assignment methods with conventional LOR methods. It overcomes two concerns associated with these separate methods. It
overcomes the robustness problems associated with pole placement methods and trial and error required in the application of the LQR
problem. Moreover, a Kalman filter is used as the observer, but is modified by using the loop transfer recovery (LTR) technique
with modified transmission zero assignment.

The proposed inverse LQG/LTR controllers enhances the forward motion stability and maneuverability of the combination
vehicles. At high speeds, where the inherent yaw damping of the vehicle system decreases, the controller operates to maintain an
adequate level of yaw damping. At backward moton, both 4WS (2WS tow-vehicle, 2WS trailer) and 6WS (4WS tow-vehicle, 2WS
trailer) control laws are proposed by using inverse LQG/LTR method. To evaluate the stability and robustness of the proposed
controllers, simulations for both forward and backward motion were conducted using a detailed nonlinear model. The proposed
controllers are significantly more robust than the previous controllers and continues to operate effectively in spite of parameter
perturbations that would cause previous controllers to enters limit cycles or to loose stability.
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1. INTRODUCTION framework. The range of permissible pole location is
restricted by the LQR framework to robust locations that have

The linear quadratic regulator (LQR) is an optimal design enough margins.
technique that yields a robust system with a gain margin of (1/2, One may ask "what is the difference between the proposed
o0 ) and a phase margin of (-60,60) degree. Although these method and simple pole placement method?” The answer may
margins are guaranteed, it is difficult to place the closed loop be that it is very difficult to know the region of LQR in high
poles precisely by choosing a weighting matrix. In the LQR  order system, if we simply apply pole assignment method we
method the designer must reduce all of his varied performance  have to rely on the trial and error. Moreover, in multi-input
requirements to a criterion that is restricted to be quadratic in and multi-output system, the gains generated by pole
states and controls. There is no direct connection between placement method is not unique. This method is also effective
such criteria and more specific time domain specifications. when we schedule the gain of the time varying system with
Therefore the designer must resort to trial and error iterations. more smooth gains. By programming approach we can also
Some methods have been devised to reduce the number of put more weighting on the dominant poles. This will

iterations. Kawasaki [1] used a recursive procedure to place  contribute in managing the dominant poles.

the poles of the optimal regulator i open hyperbola. A Based on the separation theorem of estimation and control,
transformation approach, which places the entire closed-loop QG compensator can be separated into two subsystems. The
eigenspectrum in a specified disc, has been used by Furuta[2]. first subsystem is a Kalman filter which estimates the state of
A second class of problems is that of assigning the closed-loop plant. The second subsystem is regulator generated by the
poles to specific locations while minimizing the performance QR method. If we combine the LQR and Kalman filter the
index. Tan-Jan[3] and Shiehf4] are the ones that consider the guaranteed margins of LQR are no longer achieved. The
problems of assigning the closed loop poles to specific locations.  ejgenstructure of the system with an observer not generally
Tan-Jan presented two systematic procedures that can relax  those of the LQR. To solve this problem, a method to tune the
damping ratio constraints compared with Shieh's method.  filter so that it recovers the full state feedback properties has
However, the problem in Tan-Jan's method is that the real parts been presented by Doyle, Stein and Athans[5,6]. This method is
of all of the eigenvalues should be shifted together. Therefore, known as LQG/LTR( Linear Quadratic Gaussian with Loop
we need some algorithms to place any poles near its desired Transfer Recovery) which recovers the loop properties of full
locations with minimum control action as well as providing state feedback(LQR), and still does the Kalman filtering

margins of LQR problem. . mission but with less accuracy.  Actually, this method is a
In this paper a method for obtaining the robustness benefits trade-off between the loop recovery and accuracy of the filter.
of the LQR regulators together with the specificity of pole In this paper we used LQG/LTR method for the steering

placement regulators is derived. The concept is called inverse control of combination vehicles. This method has been
LQR. The basic concept is to place poles but through the LQR successfully applied to the steering system to enhance forward
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motion stability and maneuverability of combination vehicles.
The regulator is derived by the inverse LQR method so that the
closed loop poles can assigned but will be restricted to regions
yielding robustness. The observer is based on Kalman filtering
but is supplemented with LTR techniques. In adition, we
modified non-square system matrix to transform non-minimum
phase square system to apply LTR techniques. However, if we
tighten the filter loop by using LTR method, some of the
eigenvalues of the filter loop will shift to the left in the left s-
plane. In order to follow the fast dynamics of these filter poles
the sampling rate must be increased. This will increase the
calculation load of Kalman filter. Therefore, we need a
trade-off between LTR performance and the required sampling
rate.

The proposed control method, called inverse LQG/LTR
here, was succesfully applied to the combination vehicles,
especially to control the automatic steering system. First the
method was applied to the forard motion when vehicle is
running at high speed with the trailer wheel controls. Second,
this method also applied to the backward motion which has
inherent stability problem. In addition, this design approach was
applied to 6WS system which includes the 4WS tow-vehicle.

2. CONTROL METHODOLOGY

2.1 Motivation and problem statement of inverse LQR

An advantage of using LQR design is that a time-invariant
system can always be made asymptotically stable if the system
is stabilizable and detectable. There are two problems
associated with LQR design as discussed. To overcome these
problems, we can use pole assignment technique. Then, there
would be direct connection to time response characteristics.
But, there would be no quarantee of robustness if the assigned
poles are not in the LQR region. The problem by using LQR is
that we cannot actually move the coupled yaw damping poles to
desired region by sclecting the weighting matrix diagonally.
Thus, we can consider a combination of LQR and pole
assignment. An algorithm is proposed which finds appropriates
LQR weighting matrices to allow the closed loop poles to
approach a set of desired poles. If the desired poles are
outside the allowable LQR region, the algorithm finds the poles
inside the LQR region that are closest to the desired poles.
Although this algorithm may not move all of the poles to the
desired position, it gives the designer the ability to move
toward the desired pole region if the desired pole is in the LQR
region.

From State Equation derived in Appendix, and neglecting
state noise and driver's command, the closed loop system with
full state feedback gain K, can be written as

X =(A-8K,)X (0]

where K. =A"8/P

and P is the steady-state solution of the control algebric
Riccati equation (CARE) as

PA+AP+Q-PBR'BIP=0
Eq.(2) can be expressed as

@

By combining Eq.(1),
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X=(A-BA'GPIX=AX (3)
and the closed loop poles are the eigenvalues of A°. From
Eq.(3), because P is a function of Q and R The closed
loop eigenvalues depend only on Q (state weighting) and
R.(input weighting).

The purpose of the algorithm can be expressed which
minimize the difference between desired pole and achievable
pole.  This can be written as the cost function

J=EWE - K F @
where W, is the importance weighting of each poles, and
A9 and 4* are eigenvalues of the desired and the achievable,
respectively. In the LQR problem, the state weighting
matrix is required to be positive semidefinite (Q = 0) and the
control weighting matrix positive definite (A7 > 0). Q can be
positive semidefinite by defining Q@ = N'N. Likewise, R
can be made positive definite by defining 7 =M’ M and
requiring M to be square or more rows and have full column
rank. f Qand R are varied by giving smali perturbations to

N and M, the response of the pole difference cost function J
can be determined by asfom and aj/av. It was possible to

find the minimum value of J when a/fom and asfov is
smaller than a preset tolerance by applying simplex method.

2.2 Algorithm for inverse LQR and design results

A computer program is written by using Matlab software
on the personal computer. Some of the internal functions in
Matlab like Riccati equation solver(lge) and optimization
function(fmins) were used in the program. Based on the poles
determined from LQG method which was designed by trail and
error, the desired poles,achievable poles and achieved poles
by using this algorithm are shown in Fig. 1 when applied to the
forward motion case. The achievable poles are very similar to
the desired poles. This means the desired poles are in the LQR

region.

2.3 Loop Transfer Recovery(LTR)

The standard LQG design procedure is modified by using
fictitious state noise at the input. From Eq.(A.4) we can
express the state space representation with white noise as

X = AX +8,d, +B,d, + Fy (5)
Y =CX+Dw 6)
where F and O are the plant disturbance and
measurement noise matrix respectively, ¥ and w are white
noise vectors with unit covariance, and C is observation
matrix. The optimal state estimator was applied to estimate
the full state. A, and A, are the covariance of the fictitious
plant disturbance and sensor noises, respectively, and expressed
as
R, = E{Fp F}+q*BVE] )]
R, = E{OWW' D"} ®
where ¢ is a scalar parameter that can be used to increase or
decrease the intensity of fictitious plant noise and V' is any
positive definite symmetric matrix. The Doyle-Stein[5]
condition for robustness recovery at input is



K, (I+COK,)" = B(COB)" ®
where @ =(s/-A4)".
Note that this condition explicitly requires that C®B, be
invertible; hence it is necessary to "square" a non-square system
if the trailer wheels are only controlled. The system we are
considering has 1l-input(d,) and 2- output(?, ). This is
accomplished by augmenting 8 by 4x(2-1) matrix
B ey such that

rank (B, 8ymm 1=2 (10)
One of the systematic procedure for selecting matrix B8,,,,,

that satisfies the rank and the non-minimum phase zero
condition is using inverse LQR approaches shown in previous
section by assigning some poles. This can be obtained by
assigning transmission zeros instead of regulator poles.

3. DESIGNRESULTS

The inverse LQG/LTR problem is applied to both forward and
backward motion control of the combination vehicles with the
parameters and structure as shown in Appendix A. The phase

margin and filter poles with respect to q° values are shown in
Table 1 for the forward motion case. These results clearly
shows that the phase margin are recovered as ¢° is ncreased

from 0.00001 to 1.0.
The two of four filter poles approach to the transmission zeros

of the plant (-3.87013.532i) if we increase ¢° value.And

the other two approach infinite.
The Bode plot is given in Fig.2 which shows the recovery

results for several ¢° value. For the backward motion case we

controlled the trailer wheels the same way as the forward motion
case. The recovery results are shown in Fig.3. In addition, the
phase margin and filter poles for forward motion cases is shown
in Table 1. The backward motion results are also improved when
compared with the PD control law presented in[8]. The time
domain simulation also shows that the design using the inverse
LQG/LTR improved the stability and maneuverability for forward
motion at high speed. And the robustness performance with
respect to major parameter perturbations including the moment of
inertia, CG and mass was also improved. The one of the
simulation results with the lane change maneuver are shown in
Fig.3. This results shows that the inverse LQG/LTR approches
the regulator problem and improved the stability to lane change
maneuvering.

Although inverse LQG/LTR improves the robustness of the
steering control system compared with the previous control law,
the main problem of a trailer backward steering system is that the
tratler cannot move to the predicted center line of the tow-vehicle
when initial off-tracking or the amplitude of driver command is
very high. To overcome this problem, we are proposing a trailer
steering control combined with 4WS tow-vehicle. The main idea
is to command a open loop negative signal to the rear wheel of
tow-vehicle if front steering command is positive and hitch angle
is negative. This will make more sharp cornering. The same
design approach combined with open loop control, which
depends on the polarity of the input and hitch angle and the
magnitude of the steering command, improved the performance
of the backward motion stability. When the initial hitch hitch
angle is -25° and parameters are perturbed with the vehicle
speed -3.3m/sec, the step command (slope 35°/1.5sec, 35°
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amplitude) is injected to driver’s command, the trajectory is
shown in Fig. 4. The plot shows that 4WS(B) with open loop
control makes more sharp comering compared with 4WS(A).

Table 1. Phase Margin and filter poles (forward)

Control Law( qz) PM Filter Poles
Inverse LQR 97.26 Not available
Inverse LQG 79.46 | -3.510%3.476i,
-14.195+12.090i
Inverse LQG/LTR 83.71 | -3.51413.480i,
0.00001) -18.366+7.6671
Inverse LQG/LTR 93.98 | -2.113e2, -10.684,
(0.001) 3.616+3.529i
Inverse LQG/LTR 96.85 | -2.112e3,-57.118,
0.1) -3.862+3.534i
Inverse LQG/LTR 97.13 | -6.679e3,-1.787¢2,
(1.0) -3.869+3.532i
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4. CONCLUSIONS

A robust control methodology called with the inverse LQG/LTR
was developed and applied to the forward motion of
combination vehicle which has stability problem at high speed,
and also applied to the backward motion which is inherent
unstable system. The Loop transfer recovery technique is also
applied to the combination vehicles which have tansmission
zeros at zero point. In the simulation inverse LQG/LTR
control was able to operate effectively with large parameter
perturbations. For examples, when the mass and moment of
inertia are increased three time with respect to the nominal
parameters and CG is moved 0.2 meter backward, the controller
provides stability for a lane change simulation with 4 meter
offset at vehicle speed 25m/sec.
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APPENDIX
The tow-vehicle model used in this paper is Ford minitruck(1.4
ton). The trailer is actually semitrailer. Although the equation of
motion is nonlinear, we used linear model in order to design the
controller by introducing the conditions that the slip angle is
small and the contact-patch of the tire is neglected. The tire
lateral force can be written as:

F,=Ca, (A.1)
where C,is the cornering stiffness for each wheels (i=1, 4).
The slip angle of the tow-vehicle and trailer can be as follows:

v+, (A2)
u

a, =d, -

a=d - 6~ V+h/+15[,—[_7)5 (A3)

In order to design the controller we assumed that the hitch
angle is small and combining the EQ.(A.1), (A.2) and (A.3),

then the dynamic equations become
LX =RAX+B,d, +8d, (A4)
where L, A, A, and A, become
m+m mh -mh 0
_| mh I+mi —mhh 0
-mh -mhh l+mh 0
0 0 0 1
-EC+IC) —(ECL+RC) P IC, (1) —XC, +F,)
u u u
2
. “CL+RC)  ACF +h’fl_31)_£,u RC,(h-1) S +E,)
u u u
v3
proft N kG, (h-1) b =%C,(h-1) 5CGB-1)
u u u
0 0 -1 0
" F,+C, F, +C, F,+C, F,+C,
R = Fu+Ch (R +C)L (Fa+Gy (B +C),
0 0 0 0
0 0 0 0
[ F,+C, Fu+Cy
R, - h(En +Ql) h(Eu +Qz)
(Eu +Q: X!x “L’) (Eu +gz X!; _D
0 0

The model of the tow-vehicle and trailer are shown in Fig. A.1
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tow=vehicle
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Fig. A.1 The model of the tow-vehicle and trailer



