• Title/Summary/Keyword: LMI approach

Search Result 173, Processing Time 0.023 seconds

LQ-Servo PI Controller Design Using LMI (LMI를 이용한 LQ-서보형 PI제어기 설계)

  • 김상엽;서병설
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.728-731
    • /
    • 1999
  • This paper concerns a development of LQ-servo PI controller design on the basis of time-domain approach. This is because the previous design techniques developed on the frequency-domain is not well suited to meet the time-domain design specifications. Our development techniques used in this paper is based on the convex optimization methods including Lagrange multiplier, dual concept, semidefinite programming.

  • PDF

Non-fragile guaranteed cost control of delayed descriptor systems (시간지연 특이시스템의 비약성 보장비용 제어)

  • Kim, Jong-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.246-248
    • /
    • 2006
  • This paper is concerned with non-fragile guaranteed cost state feedback controller design algorithm for descriptor systems with time-varying delay and static state feedback controller with multiplicative uncertainty. The considered uncertainties are norm-bounded and time delay is time-varying. Under the condition of controller gain variations, conditions for the existence of controller satisfying asymptotic stability and non-fragility and controller design method are derived via LMI approach. Moreover, the measure of non-fragility and the upper bound to minimize guaranteed cost function are given.

  • PDF

Digital Redesign of Multiple Linear Systems by Using LMIs (LMI를 이용한 다중 선형 시스템의 디지탈 재설계)

  • Jang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.256-259
    • /
    • 2000
  • A new digital redesign method which can construct a digital controller for multiple linear systems is developed. The proposed method utilized the recently developed LMI theory to obtain a single digital controller which provide good state matching properties with multiple linear systems. A numerical example is provided to evaluate the feasibility of the proposed approach.

  • PDF

AN LMI APPROACH TO AUTOMATIC LOOP-SHAPING OF QFT CONTROLLERS

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.433-437
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of effective methods of robust controller design. In QFT design we can considers the phase information of the perturbed plant so it is less conservative than $H_{\infty}$ and ${\mu}$-synthesis methods and as be shown, it is more transparent than the sensitivity reduction methods mentioned . In this paper we want to overcome the major drawback of QFT method which is lack of an automatic method for loop-shaping step of the method so we focus on the following problem: Given a nominal plant and QFT bounds, synthesize a controller that achieves closed-loop stability and satisfies the QFT boundaries. The usual approach to this problem involves loop-shaping in the frequency domain by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. Clearly such an automatic process must involve some sort of optimization, and while recent results on convex optimization have found fruitful applications in other areas of control theory we have tried to use LMI theory for automating the loop-shaping step of QFT design.

  • PDF

Design of a Tracking Gain-up Controller for the Vibration Suppression of Tracking Actuator (트랙킹 액추에이터의 진동 억제를 위한 트랙킹 Gain-up 제어기 설계)

  • Lee, Moonnoh;Jin, Kyoung Bog
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.356-364
    • /
    • 2013
  • This paper presents a tracking gain-up controller design method to control effectively the vibration of tracking actuator caused by external shocks and remaining velocity after seek control. A pole placement constraint is considered to assure a desired transient response against the vibration of tracking actuator. A loop gain-up constraint is introduced to hold the tracking gain-up loop gain and control bandwidth within allowable bounds. The pole placement constraint is expressed by a matrix inequality and the loop gain-up constraint is considered as an objective function so that genetic algorithm can be applied. Finally, a tracking gain-up controller is obtained by integrating a genetic algorithm with LMI design approach. The proposed tracking gain-up controller design method is applied to the track-following system of a DVD recording device and its effectiveness is evaluated through the experimental results.

Robust Torque Control of Internal Combustion Engine Using LMI Technique (수치화 최적화 기법을 이용한 내연기관의 강인한 토크 제어)

  • 김영복;양주호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.100-109
    • /
    • 1997
  • Parameters in the internal combustion engines are variable depending on the operating points. Therefore, it is necessary to compensate for the uncertainties. Form this point of view, this paper gives a controller design method and a robust stability condition by LMI approach for engine torque control which satisfies the gives H$\infty$ control performance in the presence of physical parameter perturbations. To the end, the robustness of the system in the presence of perturbation is guaranteed in the all engine operating regions. Its effectiveness is demonstrated by simulation.

  • PDF

Design of a Static Output Feedback Stabilization Controller by Solving a Rank-constrained LMI Problem (선형행렬부등식을 이용한 정적출력궤환 제어기 설계)

  • Kim Seogj-Joo;Kwon Soonman;Kim Chung-Kyung;Moon Young-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.747-752
    • /
    • 2004
  • This paper presents an iterative linear matrix inequality (LMI) approach to the design of a static output feedback (SOF) stabilization controller. A linear penalty function is incorporated into the objective function for the non-convex rank constraint so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. Hence, the overall procedure results in solving a series of semidefinite programs (SDPs). With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Extensive numerical experiments are Deformed to illustrate the proposed algorithm.

[ $H_{\infty}$ ] Control of 2-D Discrete State Delay Systems

  • Xu Jianming;Yu Li
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.516-523
    • /
    • 2006
  • This paper is concerned with the $H_{\infty}$ control problem of 2-D discrete state delay systems described by the Roesser model. The condition for the system to have a specified $H_{\infty}$ performance is derived via the linear matrix inequality (LMI) approach. Furthermore, a design procedure for $H_{\infty}$ state feedback controllers is given by solving a certain LMI. The design problem of optimal $H_{\infty}$ controllers is formulated as a convex optimization problem, which can be solved by existing convex optimization techniques. Simulation results are presented to illustrate the effectiveness of the proposed results.

Reduced-order controller design via an iterative LMI method (반복 선형행렬부등식을 이용한 축소차수 제어기 설계)

  • Kim, Seog-Joo;Kwon, Soon-Man;Lee, Jong-Moo;Kim, Chun-Kyung;Cheon, Jong-Min
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2242-2244
    • /
    • 2004
  • This paper deals with the design of a reduced-order stabilizing controller for the linear system. The coupled lineal matrix inequality (LMI) problem subject to a rank condition is solved by a sequential semidefinite programming (SDP) approach. The nonconvex rank constraint is incorporated into a strictly linear penalty function, and the computation of the gradient and Hessian function for the Newton method is not required. The penalty factor and related term are updated iteratively. Therefore the overall procedure leads to a successive LMI relaxation method. Extensive numerical experiments illustrate the proposed algorithm.

  • PDF

ON GLOBAL EXPONENTIAL STABILITY FOR CELLULAR NEURAL NETWORKS WITH TIME-VARYING DELAYS

  • Kwon, O.M.;Park, Ju-H.;Lee, S.M.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.961-972
    • /
    • 2008
  • In this paper, we consider the global exponential stability of cellular neural networks with time-varying delays. Based on the Lyapunov function method and convex optimization approach, a novel delay-dependent criterion of the system is derived in terms of LMI (linear matrix inequality). In order to solve effectively the LMI convex optimization problem, the interior point algorithm is utilized in this work. Two numerical examples are given to show the effectiveness of our results.

  • PDF