• 제목/요약/키워드: LMI Region

검색결과 29건 처리시간 0.026초

LMI를 이용한 축소차수 $H_{\infty}$ 제어기 설계 (Design of a reduced-order $H_{\infty}$ controller using an LMI method)

  • 김석주;정순현;천종민;김춘경;이종무;권순만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.729-731
    • /
    • 2004
  • This paper deals with the design of a low order $H_{\infty}$ controller by using an iterative linear matrix inequality (LMI) method. The low order $H_{\infty}$ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, a linear penalty function is incorporated into the objective function so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Numerical experiments show the effectiveness of the proposed algorithm.

  • PDF

반복 선형행렬부등식을 이용한 저차원 H 제어기 설계 (Design of a Low-Order H Controller Using an Iterative LMI Method)

  • 김춘경;김국헌;문영현;김석주
    • 제어로봇시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.279-283
    • /
    • 2005
  • This paper deals with the design of a low-order H/sub ∞/ controller by using an iterative linear matrix inequality (LMI) method. The low-order H/sub ∞/ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, the recently developed penalty function method is applied. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. Numerical experiments showed the effectiveness of the proposed algorithm.

불확정성 선형 시스템의 강인 극점 배치 (Robust Pole Assignment of Uncertain Linear Systems)

  • 김재성;김진훈
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권4호
    • /
    • pp.183-190
    • /
    • 2000
  • It is well-known that the poles of a system are closely related with the dynamics of the systems, and the pole assignment problem, which locates the poles in the desired regions, in one of the major problem in control theory. Also, it is always possible to assign poles to specific points for exactly known linear systems. But, it is impossible for the uncertain linear systems because of the uncertainties that originate from modeling error, system variations, sensing error and disturbances, so we must consider some regions instead of points. In this paper, we consider both the analysis and the design of robust pole assignment problem of linear system with time-varying uncertainty. The considered uncertainties are the unstructured uncertainty and the structured uncertainty, and the considered region is the circular region. Based on Lyapunov stability theorem and linear matrix inequality(LMI), we first present the analysis result for robust pole assignment, and then we present the design result for robust pole assignment. Finally, we give some numerical examples to show the applicability and usefulness of our presented results.

  • PDF

크기가 제한된 제어기를 갖는 가변구조제어 시스템의 점근 안정 영역 추정 (Estimation of the Asymptotic Stability Region for the Uncertain Variable Structure Systems with Bounded Controllers)

  • 최한호;국태용
    • 제어로봇시스템학회논문지
    • /
    • 제9권8호
    • /
    • pp.616-622
    • /
    • 2003
  • This paper deals with the problem of estimating the asymptotic stability region(ASR) of uncertain variable structure systems with bounded controllers. Using linear matrix inequalities(LMIs) we estimate the ASR and show the exponential stability of the closed-loop control system in the estimated ASR. We give a simple LMI-based algorithm to get estimates of the ASR. We also give a synthesis algorithm to design a switching surface which will make the estimated ASR big. Finally, we give numerical examples in order to show that our method can give better results than the previous ones for a certain class of uncertain variable structure systems with bounded controllers.

Descriptor Type Linear Parameter Dependent System Modeling And Control of Lagrange Dynamics

  • Kang, Jin-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.444-448
    • /
    • 2003
  • In this paper, the Lagrange dynamics is studied. A state space representation of Lagrange dynamics and control algorithm based on the state feedback pole placement are presented. The state space model presented is descriptor type linear parameter dependent system. It is shown that the control algorithms based on the linear system theory can be applicable to the state space representation of Lagrange dynamics. To show that the linear system theory can be applicable to the state space representation of Lagrange dynamics, the LMI based regional pole-placement design algorithm is developed and present two examples.

  • PDF

다층상구조물의 강인 진동제어에 관한 연구 (A Study of Robust Vibration Control for a Multi-Layer Structure)

  • 김창화;정병건;정해종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권8호
    • /
    • pp.1212-1219
    • /
    • 2009
  • 본 연구에서는 실용설계의 새로운 도구로써 제어계의 강인성, 성능, 안정성 등의 설계지침을 정량화하기 쉽고 해가 효율적으로 구해져 주목받는 선형행렬부등식을 이용하여 강인한 LMI 제어기를 설계한다. 우선 다층상 구조물의 진동제어를 위해 수학적 모델링을 행하고 적분형 서보계를 적용한 LMI 제어 기법으로 상태 피드백 제어칙을 설계한다. 다음으로 설계한 제어칙으로 시스템 불확실성의 변동에 대해 시간영역의 설계사양을 고려한 경우와 고려하지 않은 경우에 대하여 시뮬레이션을 행하고 실제 적용 가능성을 검토한다.

선형행렬부등식을 이용한 정적출력궤환 제어기 설계 (Design of a Static Output Feedback Stabilization Controller by Solving a Rank-constrained LMI Problem)

  • 김석주;권순만;김춘경;문영현
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권11호
    • /
    • pp.747-752
    • /
    • 2004
  • This paper presents an iterative linear matrix inequality (LMI) approach to the design of a static output feedback (SOF) stabilization controller. A linear penalty function is incorporated into the objective function for the non-convex rank constraint so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. Hence, the overall procedure results in solving a series of semidefinite programs (SDPs). With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Extensive numerical experiments are Deformed to illustrate the proposed algorithm.

고정 구조를 가지는$H_\infty$ 전력계통 안정화 장치 설계 (Design of a Fixed-Structure H$_{\infty}$ Power System Stabilizer)

  • 김석주;이종무;권순만;문영현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권12호
    • /
    • pp.655-660
    • /
    • 2004
  • This paper deals with the design of a fixed-structure $H_\infty$ power system stabilizer (PSS) by using an iterative linear matrix inequality (LMI) method. The fixed-structure $H_\infty$ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, a linear penalty function is incorporated into the objective function so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Numerical experiments show the practical applicability of the proposed algorithm.

크기가 제한된 제어기를 갖는 비정합 불확실성의 가변구조 시스템을 위한 점근 안정 영역 추정 (Estimation of the Asymptotic Stability Region for a Mismatched Uncertain Variable Structure System with a Bounded Controller)

  • 최한호
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.600-603
    • /
    • 2007
  • We propose a method to estimate the asymptotic stability region(ASR) of a mismatched uncertain variable structure system with a bounded controller. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix. Using linear matrix inequalities(LMIs) we estimate the ASR and we show the quadratic stability of the closed-loop control system in the estimated ASR. We also give a simple LMI-based algorithm for estimating the ASR. Finally, we give a numerical example in order to show the effectiveness of our method.

크기가 제한된 입력을 갖는 가변구조제어 시스템을 위한 개선된 안정 영역 추정값 (An Improved Estimate of the Asymptotic Stability Region for the Uncertain Variable Structure Systems with Bounded Control)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제11권6호
    • /
    • pp.492-495
    • /
    • 2005
  • This paper deals with the problem of estimating the asymptotic stability region(ASR) of uncertain variable structure systems with bounded control. Using linear matrix inequalities(LMIs) we estimate the ASR and we show the exponential stability of the closed-loop control system in the estimated ASR. We show that our estimate is always better than the estimate of [3].