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1. INTRODUCTION 

 
Most of the mechanical systems and physical apparatus are 

modeled by the Lagrange dynamics. In the robotics literatures, 
most of researchers on the control of constrained mechanical 
systems have been focused on the systems in which the 
constrained motion is modeled holonomic constraints. Since 
1980s, the analysis and control of nonholonomic systems have 
been studied.[1] 

The Lagrange dynamics are based on the derivatives of 
energy with respect to time and coordinates. It is known that, 
for complex systems, the Lagrange dynamics is easier than the 
Newton dynamics.[2] There are various physical systems 
which are subject to some constraints and these constraints 
should be satisfied during the motion.[3] And for complex 
systems, which can be modeled easily by Lagrange dynamics, 
the model equation includes highly coupled nonlinear terms. 
Because of these reasons, the analysis and control of Lagrange 
dynamics systems is very complex and the results of works 
related to the analysis and control of Lagrange dynamics 
systems are conservative.  

In this paper, the Lagrange dynamics is studied. A state 
space representation of Lagrange dynamics and control 
algorithm based on the state feedback pole placement are 
presented. The state space model presented is descriptor type 
linear parameter dependent system. It is shown that the control 
algorithms based on the linear system theory can be applicable 
to the state space representation of Lagrange dynamics. To 
show that the linear system theory can be applicable to the 
state space representation of Lagrange dynamics, the LMI 
based regional pole-placement design algorithm is developed 
and present two examples. 

 
2. DESCRIPTER LPD SYSTEM AND LAGRANGE 

DYNAMICS 
This section summarizes some definitions of previous 

works about descriptor system and LPD system. And the 
Lagrange dynamics are introduced.  
 

2.1 Descriptor LPD System 
Before introducing the LPD system, we need to define the 

set of all admissible parameter trajectories. 
Definition 1[4]. Given a compact set sP R⊂ , the parameter 
set Fp denote the set of all piecewise continuous functions 

mapping R+  into P with finite number of discontinuities in 
any interval.  
By the definition 1, the parameter value Fpiρ ∈  are 

differentiable with respect to time. It is assumed in this paper 
that the parameter value is bounded, i.e., 
  iρ δ≤                 (1) 

The state-space representation of descriptor system is 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

E x t A x t B u t

y t C x t

ρ ρ ρ

ρ

= +

=
       (2) 

where, n nE R ×∈ , n nA R ×∈ , p nB R ×
∈ , q nC R ×

∈  
which are time-varying and u  is p  dimensional inputs, y  
is q  dimensional outputs. In this paper, the matrix E  is 
assumed to be non-singular for all possible parameter value 

Fpρ ∈ . For DLPD system, the quadratic stability is defined 

by following definition. 
Corollary 1. The system matrices E and A are constant 
matrices. The system described by equation (1) is 
quadratically stable if there exist a positive definite matrix P  
and Q  such that the following equation is hold. 

 0TA PE EPA+ <             (3.a) 

 0T TE PE E PE+ <            (3.b) 
where, the matrix E  is non-singular. 
Proof) The proof of this corollary is very simple. Let 

( ) ( ) ( )z t E x tρ= , then the system is 

 ( ) 1( ) ( ) ( )z t E EA E z t EBu t−= + +        (4) 

The stability of ( )z t  is guaranteed by equations (3.a) and 
(3.b). And the stability of ( )x t is guaranteed by the stability 
of ( )z t .                QED. 

The controllability and controllability are summarized by 
following corollaries. 
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Corollary 1. The descriptor system described by the equation 

(1) is controllable if the matrix ( ) n nE Rρ ×∈  is nonsingular 
for all possible ρ  and 

( ) ( )rank A B nρ ρ =               (5) 

Corollary 2. The descriptor system described by the equation 

(1) is observable if the matrix ( ) n nE Rρ ×∈  is nonsingular 
for all possible ρ  and 

( ) ( )rank A C nρ ρ =               (6) 

These corollaries are important in this paper because the 
controller presented in this paper is based on the state 
feedback and the system described by the equation (2) is 
assumed to be controllable and observable. 
 
2.3 Lagrange Dynamics 

The Lagrange dynamics are based on the derivatives of 
energy with respect to time and coordinates. It is known that, 
for complex systems, the Lagrange dynamics is easier than the 
Newton dynamics. The Lagrange dynamics are derived by 
following steps. 

Let the kinetic energy of the system be K  and potential 
energy be P  then, the Lagrange matrix is defined by 

 L K P= −                (7) 
The Lagrange dynamics are obtained by following equations 

 i
i i

L LF
t q q
 ∂ ∂ ∂

= −  ∂ ∂ ∂ 
           (8) 

 i
ii

L LT
t θθ
 ∂ ∂ ∂

= −  ∂ ∂∂ 
           (9) 

where, iq  is axis of generalized coordinates related to 
directional movement and iF  is sum of all forces related to 

the directional movement. And iθ  is of generalized 
coordinates related to revolute movement and iT  is sum of 
all forces related to the revolute movement. Now, define the 
axis of the generalized coordinate v  as  

 Tv q θ=                 (10) 

then, equation (8) and (9) are expressed by the following 
matrix form 
 ( ) ( , ) ( ) ( )T

LM v v C v v v B v A vτ λ+ = −       (11) 
In the equation (11), the matrix ( )M v  is inertia matrix, 

( , )C v v  is coriolis and centrifugal forces, ( )LB v  is input 
matrix and ( )A v  is n m×  Jacobian matrix. The variable λ  
is Lagrange multiplier the physical meaning of which is 
constrained force. Thus, the equation (11) is the model of 
physical system with m  order constrained forces. 
 

3. MODELLING AND CONTROL OF 
LAGRANGE DYNAMICS 

   
3.1 Constraint Equations on the Lagrange Dynamics 

There are various physical systems which are subject to 
some constraints and these constraints should be satisfied 
during the motion. The Lagrange dynamics described by the 

equation (11) have m -order force constraints. These 
constraints can be represented in matrix form as.  
 ( ) 0A v v =                (12) 
And ( )A v  is made up of the vector functions ( )i vα  as 
follows 
 1 2( ) ( ) ( ) ( )mA v v v vα α α=           (13) 

It is clear that is ( )A v  has a full rank for all v , then the 
m constraints are independent. Otherwise, by proper 
row-operations of ( )A v , a new set of constraints can be found. 
It is assumed in this paper that ( )A v  is a full row-rank, i.e., 
the system has m  independent constraints. Then we can 
found a set of n m−  smooth and linearly independent vector 
fields in the null space of ( )A v , denoted by ( )AΝ . Let ( )S v  
be the full rank matrix made up of these vectors, 
 1 2( ) ( ) ( ) ( )n mS v s v s v s v−=           (14) 

Because the matrix ( )S v  is made up of vector fields in the 
null space of ( )A v , the following relation must be hold for all 
v . 
 ( ) ( ) 0S v A v =               (15) 
By pre-multiplication of the matrix ( )S v  to the equation (11), 
we can obtain 
 ( ) ( ) ( ) ( , ) ( ) ( )LS v M v v S v C v v v S v B v τ+ =      (16) 
In order to obtain the state space representation of the equation 
(16), let us define the state variables as 

 1

2

( ) : ( )
( ) : ( )

x t v t
x t v t

=
=

             (17) 

and parameters as 

 1

2

( ) ( )
( ) ( )
t v t
t v t

ρ
ρ

=
=

             (18) 

The state space representation of the equation (16) is 
1

1 2 1 2 2

0 ( )
0 ( , ) ( , ) ( )
I x t

S M x tρ ρ ρ ρ
   

=   
   

      

 1

1 2 1 2 2

0 ( )
0 ( , ) ( , ) ( )

I x t
S C x tρ ρ ρ ρ

   
   −   

 

1 2 1

0
( )

( , ) ( )L
u t

S Bρ ρ ρ
 

+  
 

  (19) 

If we select the outputs as velocities ( )v t  then the output 
equation is 
 ( ) 0 ( )y t I x t=                (20) 

The equation (19) and (20) is the DLPD system for Lagrange 
dynamic equation.  
 
3.2 Controller Structure 

The most important control strategy of physical systems is 
reference tracking. To achieve this objective, the control 
structure is shown by figure 1. 
In figure 1, parameters in the block are all parameter 
dependent. It is shown in figure 1 that the controller has two 
control parameters one of which is state feedback and the 
other is control gain with integrator. The input signal is 
described by 

( ) ( ) ( ) ( ) ( )u t F x t K e t dtρ ρ= − + ∫         (21) 
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Fig. 1. Controller structure 

  
where ( )F ρ  is a parameter dependent state feedback gain 
matrix and ( )K ρ  is a integrator gain matrix. Note that 
because of controller parameters ( )F ρ  and ( )K ρ  are 
time-varying parameter dependent, it is very complicated and 
complex to computing controller gains. In order for obtain 
controller gains ( )F ρ  and ( )K ρ , it is needed to simplify 
control input or controller structure. The new state 1nx +  can 
be defined at ○1  in the figure 1. Then the dynamic equation 
becomes 

 
( ) ( )( ) 0 ( ) 0

( ) ( )0 ( ) 01 1

x t x tE A
x t x tI Cn n

ρ ρ
ρ

      
=      

−+ +      
 

         
( ) 0

( ) ( )
0

B
u t r t

I
ρ   

+ +   
   

  (22.a) 

 
( )

( ) ( ) 0
( )1

x t
y t C

x tn
ρ

 
 =   

+ 
         (22.b) 

and, the control input is 

 
1

( )
( ) ( ) ( )

( )n

x t
u t F K

x t
ρ ρ

+

 
=    

 
        (23) 

It is known by the equation (23) that the control input is state 
feedback for the system described by the equation (22). The 
closed loop dynamics is 
 

( )( ) 0 ( ) ( ) ( ) ( ) ( )
( )0 ( ) 01

x tE A B F B K
x tI Cn

ρ ρ ρ ρ ρ ρ
ρ

    − −
=    

−+    
 

        
( ) 0

( )
( )1

x t
r t

x t In

   
⋅ +   

+   
    (24.a) 

( )
( ) ( ) 0

( )1

x t
y t C

x tn
ρ

 
 =   

+ 
          (24.b) 

By substituting parameters in the equation (19) into the 
equation (22.a), we can obtain the state space representation of 
Lagrange dynamics as 

 

1 1

0 0 0 0
0 ( ) ( ) 0 0 ( ) ( ) 0
0 0 0 0n n

I v I v
S M v S C v

I x I x
ρ ρ ρ ρ

+ +

       
       = −       
       −       

 

     
0 0

( ) ( ) ( ) 0 ( )
0

LS B u t r t
I

ρ ρ
   
   + +   
      

    (25.a) 

 1( ) 0 0 ( ) ( ) ( ) T
ny t I v t v t x t+=           (25.b) 

And by substituting parameters in the equation (19) into the 
equation (24.a) and (24.b), we can obtain the state space 
representation of closed loop Lagrange dynamics as 

 ( ) ( ) ( ) ( ) ( )CL CL CLE x t A x t B r tρ ρ= +       (26.a) 
 ( ) ( )CLy t C x t=              (26.b) 

where, 1( ) ( ) ( ) T
nx t v t v t x +=     and 

 

1 2

0 0
( ) 0 ( ) ( ) 0

0 0

0 0
( ) ( ) [ ( ) ]( ) ( )

0 0

CL

CL L L L

I
E S M

I

I
A SB F S C B F SB K

I

ρ ρ ρ

ρ ρ ρ ρ ρ

 
 =  
  
 
 = − − + − 
 − 

 

0
0 , 0 1 0CL CLB C
I

 
 = =    
  

 

The equation (26.a) shows the closed loop poles of the 
Lagrange dynamics is the eigen-values of the matrix 1

CL CLE A− . 
The algorithm obtaining controller gains ( )F ρ  and ( )K ρ  
are derived following subsection. 
 
3.3 Regional Pole Placement of Lagrange Dynamics 

The LMI region is defined following definition[5]. 
Definition 1. LMI regions are convex subset D  of the 
complex plan characterized by 

{ }*: TD z C L Mz M z= ∈ + +                   (27) 

where M  and L  are fixed real matrices, and z  and *z  
are complex valued scalar and its complex conjugate pair.  
The matrix valued function 

*( ) Tf z L Mz M zD + +    (28) 

is called the characteristic function of the region D . 
   Following tree theorems describe the regional pole- 
placement conditions and the main results of this paper. 
Theorem 1[5]: The closed loop poles lie in the LMI region 
D  

{ }*: TD z C L Mz M z= ∈ + +                     (29) 

where, 

,
1 , 1 ,

TL L M mjk jkj k m j k m
λ= = =

≤ ≤ ≤ ≤
   
     

if and only if there exists a symmetric matrix X  satisfying 
following four inequalities. 

0
1 ,

0

T
X m A X m Ajk jk cl kj cl j k m

X

λ + + <
≤ ≤

>

 
    (30) 

 
proof) Proof of this theorem is omitted and refer Chilali and 
Gahinet’s work [5]. QED. 

We are now state a local pole placement. The i-th parameter 

iρ  is sampled by k  which denoted as k
iρ . Let , , ,i j lM  

( , , , )E A B C  be the model obtained by substituting the first 
parameter values as i-th sample, the second parameter as j-th 
sample, etc.. And select a function , ,( )i j lµ ρ , a local 
convex function, then the model can be approximated by 

( ) ( ) ( )apM M Mρ ρ ρ= + ∆     (31.a) 

∫∫ +

1E−

C

A

B 

F 

+K 
+
+ 

- 

+ 

-

+ 

- 

r e u z

x

y

1



ICCAS2003                           October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea      
 

, , , , 1, , 1, ,

, 1, , 1,

, , 1 , , 1

( ) ( )

( ) ( )

( )

i j l i j l i j l i j l

i j l i j l
ap

i j l i j l

M M

M M

M

µ ρ µ ρ

ρ µ ρ

µ ρ

− −

− −

− −

 +
 
 = +
 
 + + 

(31.b) 

where 
, , 1, , , 1,( ) ( ) ( )i j l i j l i j lµ ρ µ ρ µ ρ− −+ +  

               , , 1( ) 1i j lµ ρ −+ + =   (32) 
The approximation described by the equation (31.b) is 
reasonable because the parameter value is assumed to be 
continuous function of time and parameters (velocities) of the 
Lagrange dynamic system can be measured. For appropriately 
selected function , ,( )i j lµ ρ , which is a convex function 
between [(i,j, l)~(i-1,j, l)] , the approximation error is 
small enough. The following theorem states the algorithm of 
obtaining the controller gain matrix for , , , ( , , , )i j lM E A B C . 

Theorem 2: For , , ,i j lM  ( , , , )E A B C , the closed loop poles 
lie in the LMI region D  

{ }*: TD z C L Mz M z= ∈ + +  

where, 

,
1 , 1 ,

TL L M mjk jkj k m j k m
λ= = =

≤ ≤ ≤ ≤
   
     

if and only if there exists a symmetric matrix X  satisfying 
following four inequalities. 
 

, , , , 0
1 ,

0

Ti j l i j lX m A X m Ajk jk kjcl cl
j k m

X

λ + + <
≤ ≤

>

 
       (33) 

proof) Proof of this theorem is simple extension of theorem 1.  
    QED 
Theorem 2 states the local regional pole placement of the 

, , , ( , , , )i j lM E A B C . Because the equation (33) is not convex, 
we cannot obtain the controller gain matrix. Define 

, , , ,i j l i j lY F X , then  conditions of local pole 
placement is summarized by theorem 3. 
Theorem 3: The closed loop poles lie in the LMI region D  
if and only if there exists a symmetric matrix X  satisfying 
following inequalities. 

1, , , ,

1, , , , , ,

1, , , ,
0

1, , , , , ,
1 ,

0

i j l i j lE A X
X mjk jk

i j l i j l i j lE B Y

T
i j l i j lE A X

mkj
i j l i j l i j lE B Y

j k m

X

λ

 − 
  

+  −  +  

−    + < −  +    ≤ ≤

>

       (35) 

 
the i-th state-feedback gain matrix is 

, , 1, , , , i j li j l i j lF K Y X −  =                  (36) 

proof) The proof of this theorem is very simple extension of 
the results of Chilali and Gahinet’s work [5].         QED. 

The theorem 2 and theorem 3 shows the local regional 
pole-placement condition and the way of finding local 
controller gains. The global pole-placement condition and 
global controller gain can be achieved by using approximated 

plant. In order for global pole-placement, the control input, 
made up of local controller gain, is selected by 

, , , , 1, , 1, ,

, 1, , 1, , , 1 , , 1

, , , , 1, , 1, ,

, 1, , 1, , , 1 , , 1

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )

i j l i j l i j l i j l

i j l i j l i j l i j l

i j l i j l i j l i j l

i j l i j l i j l i j l

F F
u t x t

F F

K K
e t d

K K

µ ρ µ ρ

µ ρ µ ρ

µ ρ µ ρ

µ ρ µ ρ

− −

− − − −

− −

− − − −

 +
 = −
 + + 
 +
 +
 + + 

t∫
(37) 

By noting the equation (37), the controller gain is made up of 
local controller gains and which is convex combination of 
local controller gains between [(i,j, l)~(i-1,j, l)] . The 
following theorem states the global regional pole-placement. 
Theorem 4. Assume that the plant model is approximated by 
the equation (31) and local controller gains are obtained by the 
equation (36) for all parameter sampled points. Then the 
closed loop poles are lie in the desired region. 
Proof). The proof of this theorem is very simple extension of 
the results of Chilali and Gahinet’s work. QED. 
The theorem 4 states the global global-placement condition 
and controller design procedure is summarized as 1) sampliing 
model 2) design local controller 3) combine it.  
 
  

4. EXAMPLES 
In this section we show an example which is inverted 

pendulum system. Inverted pendulum system is shown Fig. 2 
and its dynamic equation is 

2( ) cos sin 0

cos sin

J ml ml x mgl

ml Mx ml F

θ θ θ

θθ θ θθ

+ + − =

+ − =
               (38) 

Matrix form of dynamic equation is,  
2 0 0 0 sin( ) cos

00 sincos
mglJ ml ml

Fx mlml M
θθθ θ

θ θθ

         + − = −         
            

Because the angle θ  is measurable, we can select parameter 
value as 1 cosρ θ= , 2 sinρ θ=  and 3ρ θ= . The state 
space realization is 
 

/2 3

1
2 2 31

1 0 0 0 0 0
0 0 0 1 0

0 0 10

x mgl x

M ml

mglml J ml

F
ρ ρ

ρ θ θ

θ ρ ρ θρ +

        
        = +        
                

 

 
Table 1 is the result of pole placement algorithm for possible 
parameter values. The parameter value is selected as the range  

, 1 1
6 6
π πθ θ− ≤ ≤ − ≤ ≤  

x

θ 2l

F

x

θ 2l

F

x

θ 2l

F

x

θ 2l

F
 

 
Fig. 2. Inverted pendulum 



Table 1. State feedback gains 
 

6
πθ = −  0θ =  

6
πθ =  

1θ = −  1.0e+005 * 
-0.0050    
2.6317    
2.7376 

1.0e+003 * 
-0.4357   
-3.4929   
-1.5452 

1.0e+005 * 
0.0050    
2.6317    
2.7376 

0θ =  1.0e+005 * 
0.0000    
2.6318    
2.7377 

1.0e+003 * 
-0.4357   
-3.4929   
-1.5452 

1.0e+005 * 
0.0000    
2.6351    
2.7412 

1θ =  1.0e+005 * 
-0.0050    
2.6317    
2.7376 

1.0e+003 * 
-0.4357   
-3.4929   
-1.5452 

1.0e+005 * 
0.0050    
2.6317    
2.7376 

 
In the Table 1, the state feedback gains are shown for each 

sampled parameters. As shown in the table, state feedback 
gains are similar. These similarities are due to the structure of 
the plant. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. CONCLUSION 
  In this paper, the state space model of the Lagrange 
dynamics is presented. The presented state space model is 
descriptor type linear parameter dependent system. Main 
result of this paper is that the easy way of treating the 
Lagrange dynamics is developed and controller design 
algorithms in the linear system theory can be applicable to the 
Lagrange dynamics by using presented state space model. 
Because of uncontrollable modes which included in 
state-space modeling, some conservatism is esist. 
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