• 제목/요약/키워드: LINEAR REGRESSION

검색결과 4,983건 처리시간 0.026초

통계적모형을 통한 고해상도 일별 평균기온 산정 (Generating high resolution of daily mean temperature using statistical models)

  • 윤상후
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1215-1224
    • /
    • 2016
  • 고해상도 격자 단위 기후정보는 농업, 관광학, 생태학, 질병학 등 다양한 분야의 현상을 설명하는 중요 요인이다. 고해상도 기후정보는 동적 모형과 통계적 모형을 통해 얻을 수 있다. 통계적 모형은 동적 모형에 비해 계산 시간이 저렴하여 시공간 해상도가 높은 기후자료 생성에 주로 이용한다. 본 연구에서는 2003년부터 2012년까지 1월에 관측된 일 평균기온자료를 토대로 통계적 모형의 일 평균 기온을 생성하였다. 통계적 모형으로 선형모형을 기반으로한 일반선형모형, 일반화가법모형, 공간선형모형, 베이지안공간선형모형을 고려하였다. 예측성능평가를 위해 60개소의 지상관측소에서 관측된 일 평균기온을 모형적합 자료로 사용하여 352개소의 자동기상관측의 일 평균기온을 검증하였다. 평균제곱오차와 상관계수를 보면 베이지안공간모형의 예측성능이 다른 모형에 비해 상대적으로 우수하였다. 최종적으로 $1km{\times}1km$ 격자 단위 일 평균기온 지도를 생성하였다.

Multiple Structural Change-Point Estimation in Linear Regression Models

  • Kim, Jae-Hee
    • Communications for Statistical Applications and Methods
    • /
    • 제19권3호
    • /
    • pp.423-432
    • /
    • 2012
  • This paper is concerned with the detection of multiple change-points in linear regression models. The proposed procedure relies on the local estimation for global change-point estimation. We propose a multiple change-point estimator based on the local least squares estimators for the regression coefficients and the split measure when the number of change-points is unknown. Its statistical properties are shown and its performance is assessed by simulations and real data applications.

Estimation of slope , βusing the Sequential Slope in Simple Linear Regression Model

  • Choi, Yong;Kim, Dongjae
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.257-266
    • /
    • 2003
  • Distribution-free estimation methods are proposed for slope, $\beta$ in the simple linear regression model. In this paper, we suggest the point estimators using the sequential slope based on sign test and Wilcoxon signed rank test. Also confidence intervals are presented for each estimation methods. Monte Carlo simulation study is carried out to compare the efficiency of these methods with least square method and Theil´s method. Some properties for the proposed methods are discussed.

Combination of Schwarz Information Criteria for Change-Point Analysis

  • 김종태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.185-193
    • /
    • 2002
  • The purpose of this paper is to suggest a method for detecting the linear regression change-points or variance change-points in regression model by the combination of Schwarz information criteria. The advantage of the suggested method is to detect change-points more detailed when one compares the suggest method with Chen (1998)'s method.

  • PDF

Some Results on the Log-linear Regression Diagnostics

  • Yang, Mi-Young;Choi, Ji-Min;Kim, Choong-Rak
    • Communications for Statistical Applications and Methods
    • /
    • 제14권2호
    • /
    • pp.401-411
    • /
    • 2007
  • In this paper we propose an influence measure for detecting potentially influential observations using the infinitesimal perturbation and the local influence in the log-linear regression model. Also, we propose a goodness-of-fit measure for variable selection. A real data set are used for illustration.

On the Residual Empirical Distribution Function of Stochastic Regression with Correlated Errors

  • Zakeri, Issa-Fakhre;Lee, Sangyeol
    • Communications for Statistical Applications and Methods
    • /
    • 제8권1호
    • /
    • pp.291-297
    • /
    • 2001
  • For a stochastic regression model in which the errors are assumed to form a stationary linear process, we show that the difference between the empirical distribution functions of the errors and the estimates of those errors converges uniformly in probability to zero at the rate of $o_{p}$ ( $n^{-}$$\frac{1}{2}$) as the sample size n increases.

  • PDF

The Asymptotic Unbiasedness of $S^2$ in the Linear Regression Model with Dependent Errors

  • Lee, Sang-Yeol;Kim, Young-Won
    • Journal of the Korean Statistical Society
    • /
    • 제25권2호
    • /
    • pp.235-241
    • /
    • 1996
  • The ordinary least squares estimator of the disturbance variance in the linear regression model with stationary errors is shown to be asymptotically unbiased when the error process has a spectral density bounded from the above and away from zero. Such error processes cover a broad class of stationary processes, including ARMA processes.

  • PDF

A Note on Linear Regression Model Using Non-Symmetric Triangular Fuzzy Number Coefficients

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권2호
    • /
    • pp.445-449
    • /
    • 2005
  • Yen et al. [Fuzzy Sets and Systems 106 (1999) 167-177] calculated the fuzzy membership function for the output to find the non-symmetric triangular fuzzy number coefficients of a linear regression model for all given input-output data sets. In this note, we show that the result they obtained in their paper is invalid.

  • PDF

Interval Estimation for Sum of Variance Components in a Simple Linear Regression Model with Unbalanced Nested Error Structure

  • Park, Dong-Joon
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.361-370
    • /
    • 2003
  • Those who are interested in making inferences concerning linear combination of valiance components in a simple linear regression model with unbalanced nested error structure can use the confidence intervals proposed in this paper. Two approximate confidence intervals for the sum of two variance components in the model are proposed. Simulation study is peformed to compare the methods. The methods are applied to a numerical example and recommendations are given for choosing a proper interval.

Robust inference for linear regression model based on weighted least squares

  • 박진표
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.271-284
    • /
    • 2002
  • In this paper we consider the robust inference for the parameter of linear regression model based on weighted least squares. First we consider the sequential test of multiple outliers. Next we suggest the way to assign a weight to each observation $(x_i,\;y_i)$ and recommend the robust inference for linear model. Finally, to check the performance of confidence interval for the slope using proposed method, we conducted a Monte Carlo simulation and presented some numerical results and examples.

  • PDF