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Abstract
This paper is concerned with the detection of multiple change-points in linear regression models. The pro-

posed procedure relies on the local estimation for global change-point estimation. We propose a multiple change-
point estimator based on the local least squares estimators for the regression coefficients and the split measure
when the number of change-points is unknown. Its statistical properties are shown and its performance is assessed
by simulations and real data applications.
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1. Introduction

Both statistics and econometrics literature contain a vast amount of change-point issues related to
structural change. Most of the work in the literature is designed for a single change. The occurrence
of a single change-point in real data is rare, as data in economics, finance, and biology display multiple
changes. Thus, a statistical procedure able to reliably detect multiple changes is of practical interest.

To test the null hypothesis that regression coefficients are constant over time, Brown et al. (1975)
introduced a CUSUM test based on cumulated sums of recursive residuals. Ploberger and Kr̈amer
(1992) proposed a CUSUM test based on recursive and least-squares residuals. Bauer and Hackl
(1978) proposed a MOSUM test based on moving sums of recursive residuals. Chu et al. (1995) pro-
posed a least-squares-MOSUM test based on least-squares residuals. Andrews (1993) and Andrews
and Ploberger (1994) proposed tests for parameter constancy in linear models.

After rejecting the null hypothesis with no change model, each change-point should be estimated.
In the case of multiple changes, the problem is more intricate and few approaches are dedicated to
this problem.

There are change-point researches with the Bayesian approach since the Bayesian framework en-
ables the formal incorporation of uncertainty regarding the parameterization of theoretical models.
Broemeling and Tsurumi (1987) studied Bayesian structural change models with one change-point
and its application of MCMC and BIC criterion has been studied by Lavielle and Lebarbier (2001).
Chib (1998) provided a Bayesian approach for a multiple change-points model using a latent discrete
state variable. Koop and Porter (2004) developed a change-point model with regime duration us-
ing a MCMC sampler for conditional mean and variance. Recently Kim and Cheon (2010a) derived
the Bayesian posterior distribution for multiple change-point estimation in several parametric dis-
tributions; in addition, Kim and Cheon (2010b) also developed a Bayesian regime-switching model
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with multiple change-points. However, there are difficulties that arise in working with fully specified
Bayesian models because the exact form of the associated likelihood function is generally unknown
and the posterior analysis cannot be carried out analytically.

Dufour and Ghysels (1996) focused the importance of a structural change model that reflect dy-
namic state in econometric models. Loader (1996) proposed a change-point estimator using non-
parametric regression. McDonald and Owen (1986) considered change-point estimation using three
split linear fits at each point. Bai and Perron (1998, 2003) proposed a multiple change-point estima-
tion based on the minimization of the residual sum of squares on possible partitions; however, their
method cannot be applicable to other types of underlying functions. Perron and Zhu (2005) ana-
lyzed the limiting distributions of parameter estimates when the trend function exhibits a one slope
change. Gregoire and Hamrouni (2002) considered estimating the jump in a smooth curve using local
linear smoothing. Kim and Hart (2010) proposed one change-point estimation with the left and the
right Local Fourier estimators. One change-point detection methods are provided in various tech-
niques; however, multiple change-point estimation methods are relatively rare in regression models.
The problem is more complicated when the number of changes is unknown, and a few papers are
dedicated to this problem.

This paper provides a multiple change-point estimation method where there are several change-
points in the linear regression models. We use the divergence measure to divide segments based on
the difference of the local least squares estimators(LSE) for regression parameters and a split measure
at each possible change-point.

Our method is a new simultaneous approach computationally simple and differs from most of the
techniques suggested elsewhere (Bai and Perron, 1998, 2003). The novelty of our method is the use
of local parameter coefficient estimators to detect changes in regression parameters. Our method is
a universal approach because the change-points are simultaneously estimated and is also local in the
sense that detection is based on local least squares estimators within the bandwidth.

The paper is organized as follows. We propose a new multiple structural change-point estimation
method using local LSE in Section 2. The properties of the proposed estimator are studied via simu-
lation in Section 3. As an illustration, we also include two examples in Section 4. Finally Section 5
concludes the paper.

2. Proposed Multiple Change-Point Estimation Method

2.1. Parameter change detection with local least squares estimators

We consider the one change-point linear regression model with the change-points at τ as follows:

Yi =

{
x′iβββ1 + ϵi, i = 1, . . . , τ,
x′iβββ2 + ϵi, i = τ + 1, . . . ,T. (2.1)

where the explanatory vector xi = (1, xi1, xi2, . . . , xip)′, and regression parameter vectors β1 = (β10, β11,
. . . , β1p)′, β2 = (β20, β21, . . . , β2p)′ and ϵi ∼ iid N(0, σ2). Let h be a positive bandwidth that is less than
1/2. At point t, β̂1t is defined as the local LSE of the data left at t within [t − Th, t] with the design
matrix X1 and β̂2t is the local LSE of the data right at t within [t+1, t+Th+1] with the design matrix
X2. The difference of the left and right local LSEs is

Zt = β̂1t − β̂2t =
(
X′1X1

)−1 X′1Y1 −
(
X′2X2

)−1 X′2Y2
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and its variance is obtained as

Vt = V
(
β̂1t − β̂2t

)
= V

(
β̂1t

)
+ V

(
β̂2t

)
=

{(
X′1X1

)−1
+

(
X′2X2

)−1
}
σ2.

Therefore, we consider the unbiased estimator of Vt as

V̂t =
{(

X′1X1
)−1
+

(
X′2X2

)−1
}
σ̂2.

One possible approach is to use the idea of differencing to remove trends for the variance estimator.
Consider the first-order difference-based estimator proposed by Rice (1984) such as

σ̂2 =
1

2(T − 1)

T∑
i=2

(Yi − Yi−1)2. (2.2)

Consider the following parameter divergence measure

Qt = Z′tV̂
−1
t Zt (2.3)

that follows the chi-squared distribution under H0 : β1 = β2 = β. At the true change-point t = τ, Qτ

follows the noncentral chi-squared distribution with the noncentral parameter δ2.
Without loss of generality, we assume that there are enough observations near the true change-

points so that they can be identified by local estimation.
For detecting changes in regression parameters, we propose a change-point detector based on

Dt = Qt + splt. (2.4)

Here Qt measures the difference between the left and the right estimators of regression coefficients
and splt is a derivative measure at the point t.

At t, let Ŷt+1 be the least squares fitted estimate at t + 1 with the data in the right window and Ŷt is
the least squares fitted estimate at t with the data in the left window. With Y2t = (Yt+1,Yt+2, . . . ,Yt+Th)′

and its corresponding X2t and Y1t = (Yt,Yt−1, . . . ,Yt−Th−1)′ and its corresponding X1t we have

Ŷt+1 = x′t+1β̂2t = x′t+1

(
X′2tX2t

)−1
X′2tY2t,

and

Ŷt = x′t β̂1t = x′t
(
X′1tX1t

)−1
X′1tY1t.

We define splt as

splt =
d2

t

Atσ̂2 (2.5)

with

dt = Ŷt+1 − Ŷt
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and

At = x′t+1

(
X′2tX2t

)−1
xt+1 + x′t

(
X′1tX1t

)−1
xt.

Since the split measure should be maximized at the true change-point, we consider the split term
at τ

dτ = Ŷτ+1 − Ŷτ

= x′τ+1β̂2τ − x′τβ̂1τ

= x′τ+1

(
β̂2τ − β2

)
− x′τ

(
β̂1τ − β1

)
+ x′τ+1

(
β2 − β1

)
+ (xτ+1 − xτ)′ β1.

Let xt = (1, x1t, . . . , xpt)′ with xkt = t/T , k = 1, 2, . . . , p, and set β2 = β1 + ∆.
Consider expectation of dτ and d2

τ as

E[dτ] = E
[
Ŷτ+1 − Ŷτ

]
= x′τ+1

(
X′2τX2τ

)−1
X′2τ

(
X2τβ2 + Eϵτ+1

) − x′τ
(
X′1τX1τ

)−1
X′1τ(X1τβ1τ + Eϵτ)

= x′τ+1β2 − x′τβ1

= x′τ+1(β2 − β1) + (xτ+1 − xτ)′β1

and

E
[
d2
τ

]
= x′τ+1∆

′∆xτ+1 + Aτσ
2 + O

(
1
T

)
where

Aτ = x′τ+1

(
X′2τX2τ

)−1
xτ+1 + x′τ

(
X′1τX1τ

)−1
xτ.

Therefore, the split measure has the more weight at τ with

splτ =
d2
τ

Aτσ̂2 .

The proposed method requires a careful inspection of the sequence of {Dt}; however, it is difficult
to automate in order to estimate unknown number of structural change-points. The idea of this method
is to model how the sequence {Dt} decreases when there is a change-point and to look for the possible
change-point.

Theorem 1. When there is no change-point, Qt follows the chi-square distribution with the degree
of freedom p + 1 as T → ∞.

Proof: When there is no change-point, Qt follows the chi-square distribution with the degree of
freedom p + 1 as T → ∞.

Qt = Z′tV̂
−1
t Zt

= Z′tV
−1
t Zt + Z′t

(
V̂−1

t − V−1
t

)
Zt

=
[(
β̂1t − β

)
−

(
β̂2t − β

)]′
V−1

t

[(
β̂1t − β

)
−

(
β̂2t − β

)]
+ Op(1)

→ (U1 − U2)′V−1
t (U1 − U2) + Op(1),
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where U1 and U2 are iid multivariate normal distributed random variable with mean vector 0. There-
fore Qt → χ2

p+1 as T − p→ ∞. �

If there is no change-point in the linear model

E[Dt] = E[Qt] + E[splt] = p + 1 + O
(

1
T

)
since there is no difference in the regression parameters. At a change-point τ

E[Dτ] = E[Qτ] + E[splτ] = p + 1 + δ2 + g(∆′∆) + O
(

1
T

)
,

where δ2 is the noncentral parameter of noncentral χ2
p and g(∆′∆) is a function of ∆′∆ and the value

of g is positive.
We consider the k structural change-points in the linear regression model at c1 ≤ c2 ≤ · · · ≤ ck

with unknown k.

Yi =



x′iβ1 + ϵi, i = 1, . . . , c1,
x′iβ2 + ϵi, i = c1 + 1, . . . , c2,

...
...

x′iβk + ϵi, i = ck−1 + 1, . . . , ck,
x′iβk+1 + ϵi, i = ck + 1, . . . ,T.

(2.6)

Assuming that no other change-point occurs within the bandwidth of the estimated change-point,
our multiple change-point estimation procedure is as follows:

Step 1. Calculate Dt for possible range of change-points.

Step 2. Arrange Dt in the decreasing order as
{
D(1),D(2), . . . ,D(T ∗)

}
, where T ∗ is the number of possi-

ble change-points. Searching is done in this order.

Step 3. Select Dc1 = D(1) and the first change-point is c1. Let m < [Th]. Search the second change-
point c2 with Dc2 < (Dc1−m,Dc1+m). That is to avoid the change-point within (c1−m, c1+m). If
D(2) < (Dc1−m,Dc1+m), then Dc2 = D(2). If D(2) ∈ (Dc1−m,Dc1+m), then disregard D(2) and find
Dc2 until Dc2 < (Dc1−m,Dc1+m). Likewise search the third change-point Dc3 < (Dc1−m,Dc1+m)
and < (Dc2−m,Dc2+m). Repeat this process until the possible change-points are obtained. The
search procedure is summarized as follows

ĉ1 = arg maxt∈[m,T−m]{Dt}
ĉ2 = arg maxt<[ĉ1−m,ĉ1+m]{Dt}
ĉ3 = arg maxt<[ĉ1−m,ĉ1+m], t<[ĉ2−m,ĉ2+m]{Dt}

...

ĉk = arg maxt<[ĉ1−m,ĉ1+m],...,t<[ĉk−1−m,ĉk−1+m]{Dt}

where m = [Th] or m = [Th/2] in practice.
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Figure 1: Relative frequency of one change-point estimates in no change-point model with the bandwidth h =
0.05, 0.10, 0.15, 0.2 and σ = 0.5

3. Simulation

In this section, some simulation experiments are performed to assess the performance of the proposed
estimation method. The models considered are as follows:

(i) Simple model with no change with β = 1

Yi = βx + ϵi, i = 1, . . . ,T.

(ii) Single structural change model with ∆1 = 1.0, ∆2 = 0.3, τ = 50

Yi =

{
βxi + ϵi, i = 1, . . . , τ,
∆1 + (β + ∆2)xi + ϵi, i = τ + 1, . . . ,T.

(iii) Two structural change-point model with ∆ = 0.5, τ1 = 30, τ2 = 60

Yi =


βxi + ϵi, i = 1, . . . , τ1,
(β + ∆)xi + ϵi, i = τ1 + 1, . . . , τ2,
βxi + ϵi, i = τ2 + 1, . . . ,T,

where xi = i/T and ϵ ∼ iid N(0, σ2).

The simulation was done in 1,000 repetitions with the sample size T = 100 and σ = 0.5 and 1.0.
For the local LSE, the bandwidth h = 0.05, 0.1, 0.15 and 0.2 are used to investigate the effects of the
window size.

We do not consider the points within 20% of the right and the left edges of the points according to
the prior information and the bandwidth constraint. The relative frequency in figures is calculated as
the relative frequency of estimated change-points over 1,000 repetitions. Figure 1 shows the frequency
with no change-point model (i) with σ = 0.5 and it does not give clear peaks or gives too many similar
peaks. Figure 2 and Figure 4 show the relative frequency with the one change-point model (ii) with
respectively σ = 0.5 and σ = 1.0 and they peak at the true change-point. Figure 3 with σ = 0.5
and Figure 5 with σ = 1.0 show the relative frequency with two change-point model (iii) and they
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Figure 2: Relative frequency of one change-point estimates in one change-point model (i) with the bandwidth
h = 0.05, 0.10, 0.15, 0.2, σ = 0.5 and change-point at τ = 50

20 30 40 50 60 70 80

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

(a) h=0.05
ls change−point

rel
atv

e f
req

20 30 40 50 60 70 80

0.0
0

0.1
0

0.2
0

(b) h=0.10
ls change−point

rel
atv

e f
req

20 30 40 50 60 70 80

0.0
0

0.1
0

0.2
0

0.3
0

(c) h=0.15
ls change−point

rel
atv

e f
req

20 30 40 50 60 70 80

0.0
0

0.1
0

0.2
0

(d) h=0.20
ls change−point

rel
atv

e f
req

Figure 3: Relative frequency of two change-point estimates in a two change-point model (ii) with the bandwidth
h = 0.05, 0.10, 0.15, 0.2, σ = 0.5 and change-points at τ = 30, 60

give one high peak at the one true change-point and another peak at the other true change-point. The
overall trend is similar with σ = 0.5 and σ = 1.0 except the more variability with the bigger variance.
The size of the bandwidth does not significantly influence the change-point estimation result in these
examples. However, the bandwidth selection should be considered carefully based on the data. We do
not discuss further about the bandwidth problem.

4. Adaptation in the Example

We applied our method to find the change-point with annual GDP data in the U.S. from 1870 to 2009.
For empirical analysis, the logarithm of the data was used. One change-point estimation with the
bandwidth h = 0.05, 0.10, 0.15, 0.2 is tried and 1930 is estimated as a change-point with h = 0.2 which
has the minimum MSE(mean squared error). From the U.S. Data. Figure 6 shows the data and its
estimated change-point with the vertical line and two regression lines separated by the change-point.
World War I would have significantly impacted the global economy as well as the Great Depression
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Figure 4: Relative frequency of one change-point estimates in one change-point model (i) with the bandwidth
h = 0.05, 0.10, 0.15, 0.2, σ = 1.0 and change-point at τ = 50
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Figure 5: Relative frequency of two change-point estimates in two change-point model (ii) with the bandwidth
h = 0.05, 0.10, 0.15, 0.2, σ = 1.0 and change-points at τ = 30, 60

that lasted until the mid-1930s. The economy showed a distinct trend of growth after World War II,
which seemed to cause a structural transformation in the U.S. economy.

We also applied our method to the data on the annual volume of the Nile River from 1871 to 1970.
Cobb (1978) estimated one change-point as 1898 with the Nile River data. Among the bandwidth
h = 0.05, 0.10, 0.15, 0.2, h = 0.2 gives two change-points at 1898 and 1938 with the least MSE in
case of two possible change-points. Figure 7 shows the Nile River data and its estimated two change-
points with the vertical lines.

5. Concluding Remarks

A multiple structural change-point estimation procedure is proposed in the linear regression models
based on the difference of local least squares estimators and a split measure. Our method is a si-
multaneous change-point estimation approach. Even though the clear stopping rule is not provided,
the proposed change-point search procedure is applicable to the data when the possible number of
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Figure 6: One change-point estimate and two regression fitting lines with US GDP data from 1870 to 1970 with
the bandwidth h = 0.2
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Figure 7: Two change-point estimates with Nile River data from 1871 to 1970 with the bandwidth h = 0.2

change-points is guessed. Further research with the proposed procedure is expected with the stopping
rule, the bandwidth selection and weights for the split measure.
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