A Note on Linear Regression Model Using Non-Symmetric Triangular Fuzzy Number Coefficients

Dug Hun Hong1) • Kyung Tae Kim²

Abstract

Yen et al. [Fuzzy Sets and Systems 106 (1999) 167-177] calculated the fuzzy membership function for the output to find the non-symmetric triangular fuzzy number coefficients of a linear regression model for all given input-output data sets. In this note, we show that the result they obtained in their paper is invalid.

Keywords : Fuzzy regression analysis, Fuzzy triangular coefficients, Minimization of fuzziness, Non-symmetric coefficients

The following model shows the dependence of the output variable on the inputs variables,

$$
\begin{equation*}
\widetilde{Y}=f(\mathrm{x}, \tilde{A})=\widetilde{A}_{0}+\widetilde{A}_{1} x_{1}+\cdots+\widetilde{A}_{n} x_{n}, \tag{1}
\end{equation*}
$$

where \widetilde{Y} is the fuzzy output, $\mathrm{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{T}$ is the real-valued input vector, and $\widetilde{A}=\left\{\widetilde{A}_{0}, \widetilde{A}_{1}, \cdots, \widetilde{A}_{n}\right\}$ is a set of fuzzy numbers.
The membership function for the set \widetilde{Y} is defined by Zadeh's extension principle as follows:

$$
\mu_{Y}(y)=\left\{\begin{array}{lc}
\max \left(a_{1}, \cdots, a_{n}\right)=f^{-1}(y, x) \\
0 & \left.\min _{j} \mu_{\widetilde{A}_{j}}\left(a_{j}\right)\right\} \quad \text { if } \quad f^{-1}(y, x) \neq \phi \\
\text { otherwise } .
\end{array}\right.
$$

Then the regression analysis problem is defined as: given a set of crisp data

[^0]points $\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle, \cdots,\left\langle x_{m}, y_{m}\right\rangle$, we want to find a set of fuzzy parameters $\quad \widetilde{A}_{0}, \widetilde{A}_{1}, \cdots, \widetilde{A}_{n}$ for the Eq.(1) which is the best fit to the given data points, according to some criteria of goodness of fit.

In (1), $\quad \widetilde{A}_{i}$ is the fuzzy coefficient of the variable x_{i} in the regression model of additive form. If \widetilde{A}_{i} s have triangular membership functions, then each fuzzy number coefficient $\quad \widetilde{A}_{i}$ can be uniquely defined by

$$
\widetilde{A}_{i}=\left\{a_{i}^{L}, a_{i}^{C}, a_{i}^{U}\right\}
$$

where a_{i}^{L} is the lower limit, a_{i}^{U} is the upper limit, and a_{i}^{C} is the point having the property that $\mu \bar{A}_{i}\left(a_{i}^{C}\right)=1$. The property of symmetry of the fuzzy coefficient $\quad \widetilde{A}_{i}$ enables us to establish the following two relations:
and

$$
a_{i}^{C}=\left(a_{i}^{L}+a_{i}^{U}\right) / 2
$$

$$
a_{i}^{S}=a_{i}^{C}-a_{i}^{L}=a_{i}^{U}-a_{i}^{C}
$$

where a_{i}^{C} is the center and a_{i}^{S} the spread of \widetilde{A}_{i}.

For symmetric triangular fuzzy number coefficients, the membership function $\mu \widetilde{A}_{i}$ for $\widetilde{A}_{i}, \quad i=1, \cdots, n$ can be described as

$$
\mu \quad \widetilde{A}_{i}\left(a_{i}\right)= \begin{cases}1-\left(a_{i}^{C}-a_{i}\right) / a_{i}^{S}, & a_{i}^{C}-a_{i}^{S} \leq a_{i} \leq a_{i}^{C} \\ 1-\left(a_{i}-a_{i}^{C}\right) / a_{i}^{S}, & a_{i}^{C} \leq a_{i} \leq a_{i}^{C}+a_{i}^{S} \\ 0 & \text { otherwise }\end{cases}
$$

Having established the membership function for each fuzzy coefficient \widetilde{A}_{i}, the fuzzy output from the linear model $f(\mathbf{x}, \widetilde{A})$ in (1) can be expressed according to the principle of extension and fuzzy arithmetic on fuzzy numbers [1] as

$$
\widetilde{Y}=f(\mathrm{x}, \widetilde{A})=\left(f^{C}(\mathrm{x}), f^{S}(\mathrm{x})\right)
$$

where $f^{C}(x)$ is the center of the fuzzy linear model $f(\mathbf{x}, \widetilde{A})$ and has the form

$$
f^{C}(\mathbf{x})=a_{0}^{C}+a_{1}^{C} x_{1}+\cdots+a_{n}^{C} x_{n}
$$

and $f^{S}(\mathbf{x})$ is the spread of $f(\mathbf{x}, \widetilde{A})$ and defined as

$$
f^{S}(\mathbf{x})=a_{0}^{S}+a_{1}^{S}\left|x_{1}\right|+\cdots+a_{n}^{S}\left|x_{n}\right|
$$

where $\quad\left[f\left(\mathrm{x}_{j}\right)\right]_{h}=\left[\widetilde{A}_{0}\right]_{h}+\left[\widetilde{A}_{1}\right]_{h} x_{j 1}+\cdots+\left[\widetilde{A}_{n}\right]_{h} x_{j n} \quad$ such that $\quad[\cdot]_{h}$ represents the h-level set of a fuzzy number.
In regression , the goal is to find the fuzzy coefficients that minimize the above-mentioned spread of fuzzy output for all the data sets. The cost function, Z , to be minimized can be written as

$$
Z=a_{0}^{S}+\sum_{i=1}^{n}\left[a_{i}^{S} \sum_{j=1}^{m}\left|x_{j i}\right|\right]
$$

which can also be expressed as

$$
\text { Minimize } \quad Z=f^{S}\left(\mathbf{x}_{1}\right)+f^{S}\left(\mathbf{x}_{2)}+\cdots+f^{S}\left(\mathbf{x}_{m}\right)\right.
$$

subject to the set of constraints

$$
y_{j} \in\left[f\left(x_{j}\right)\right]_{h} .
$$

However, if these triangles are not symmetric , we need minimum three parameters to uniquely describe each. For example, \widetilde{A}_{i} can be described by the triplet $\left\{a_{i}^{L}, a_{i}^{P}, a_{i}^{U}\right\}$ or by $\left\{s_{i}^{L}, a_{i}^{P}, s_{i}^{R}\right\}$, where a_{i}^{P} is the point at which $\mu \tilde{A}_{i}\left(a_{i}^{P}\right)=1, s_{i}^{L}$ is the left-side spread from the peak point a_{i}^{P}, and s_{i}^{R} represents the right-side spread. The membership function for each \widetilde{A}_{i} has the form

$$
\mu_{\AA_{i}}\left(a_{i}\right)= \begin{cases}1-\frac{a_{i}-a_{i}^{P}}{s_{i}^{R}}, & a_{i}^{P} \leq a_{i} \leq a_{i}^{P}+s_{i}^{R} \\ 1-\frac{a_{i}^{P}-a_{i}}{s_{i}^{L}}, & a_{i}^{P}-s_{i}^{L} \leq a_{i} \leq a_{i}^{P}, \\ 0 & \text { otherwise. }\end{cases}
$$

Following the principle of extension, Yen et al.[2] used the fuzzy membership function for the output by

$$
\mu_{\widetilde{Y}}(y)= \begin{cases}1-\frac{y-\sum_{i} a_{i}^{P} x_{i}-a_{0}^{P}}{s_{0}^{R}+\sum_{i} s_{i}^{P}\left|x_{i}\right|}, & a_{0}^{P}+\sum a_{i}^{P} x_{i} \leq y \leq a_{0}^{P}+\sum_{i} a_{i}^{P} x_{i}+\left(s_{0}^{R}+\sum_{i} s_{i}^{R}\left|x_{i}\right|\right) \\ 1-\frac{a_{0}^{P}+\sum_{i} a_{i}^{P} x_{i}-y}{s_{0}^{L}+\sum_{i} s_{i}^{L}\left|x_{i}\right|}, & a_{0}^{P}+\sum_{i} a_{i}^{P} x_{i}-\left(s_{0}^{L}+\sum_{i} s_{i}^{L}\left|x_{i}\right|\right) \leq y \leq a_{0}^{P}+\sum_{i} a_{i}^{P} x_{i} \\ 0 & \text { otherwise. }\end{cases}
$$

i.e, $\quad \widetilde{Y}=\left\{S_{0}^{L}+\sum_{i} S_{i}^{L}\left|x_{i}\right|, \quad a_{0}^{P}+\sum_{i} a_{i}^{P} x_{i}, \quad S_{0}^{R}+\sum_{i} S_{i}^{R}\left|x_{i}\right|\right\}$.

But this result is wrong. Let $\widetilde{A}_{i}=\left\{S_{i}^{L}, a_{i}^{P}, S_{i}^{R}\right\}, i=1,2$ and $\lambda \in R$ be a real number. By the extension principle, the following rules for addition and real multiplication can be represented as

$$
\begin{aligned}
& \lambda \widetilde{A}=\left\{\begin{array}{lr}
\left\{\lambda S^{L}, \lambda a^{P}, \lambda S^{R}\right\} & \text { if } \lambda \geq 0, \\
\left\{|\lambda| S^{R}, \lambda a^{P},|\lambda| S^{L}\right\} & \text { if } \lambda<0, \\
\widetilde{A}_{1}+\widetilde{A}_{2}=\left\{S_{1}^{L}+S_{2}^{L}, a_{1}^{P}+a_{2}^{P},\right. & \left.S_{1}^{R}+S_{2}^{R}\right\} .
\end{array}\right.
\end{aligned}
$$

This result can be generalized to linear combinations of fuzzy numbers as follows:

$$
\begin{aligned}
\widetilde{Y} & =\widetilde{A}_{0}+\widetilde{A}_{1} x_{1}+\cdots+\widetilde{A}_{n} x_{n} \\
& =\left\{S_{0}^{L}+\sum_{x_{i} \geq 0}\left|x_{i}\right| S_{i}^{L}+\sum_{x_{i} i 0}\left|x_{i}\right| S_{i}^{R}, \quad a_{0}^{P}+\sum_{i} a_{i}^{P} x_{i}, \quad S_{0}^{R}+\sum_{x_{i} \geq 0}\left|x_{i}\right| S_{i}^{R}+\sum_{x_{i} i 0}\left|x_{i}\right| S_{i}^{L}\right\},
\end{aligned}
$$

i.e.

$$
\mu_{\widetilde{Y}}(y)=\left\{\begin{array}{l}
1-\frac{y-\sum_{i} a_{i}^{P} x_{i}-a_{0}^{P}}{S_{0}^{R}+\sum_{x_{i} \leq 0}\left|x_{i}\right| S_{i}^{R}+\sum_{x_{i}<0}\left|x_{i}\right| S_{i}^{L}}, \tag{3}\\
\text { if } \mathrm{a}_{0}^{\mathrm{P}}+\sum_{\mathrm{i}}^{\mathrm{P}} \mathrm{a}_{\mathrm{i}}^{\mathrm{P}} \mathrm{x}_{\mathrm{i}} \leq \mathrm{y} \leq \mathrm{a}_{0}^{\mathrm{P}}+\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}^{\mathrm{P}} \mathrm{x}_{\mathrm{i}}+\left(\mathrm{S}_{0}^{\mathrm{R}}+\sum_{\mathrm{x}_{\mathrm{i}} ⿺ 0}\left|\mathrm{x}_{\mathrm{i}}\right| \mathrm{S}_{\mathrm{i}}^{\mathrm{R}}+\sum_{\mathrm{x}_{\mathrm{i}}<0}\left|\mathrm{x}_{\mathrm{i}}\right| \mathrm{S}_{\mathrm{i}}^{\mathrm{L}}\right), \\
1-\frac{a_{0}^{P+} \sum_{i} a_{i}^{P} x_{i}-y}{S_{0}^{L}+\sum_{x_{i} \geq 0}\left|x_{i}\right| S_{i}^{L}+\sum_{x_{i} i 0}\left|x_{i}\right| S_{i}^{R}}, \\
\text { if } \mathrm{a}_{0}^{\mathrm{P}}+\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}^{\mathrm{P}} \mathrm{x}_{\mathrm{i}}-\left(\mathrm{S}_{0}^{\mathrm{L}}+\sum_{\mathrm{x}_{i} \leq 0}\left|\mathrm{x}_{\mathrm{i}}\right| \mathrm{S}_{\mathrm{i}}^{\mathrm{L}}+\sum_{\mathrm{x}_{\mathrm{i}} \mid 0}\left|\mathrm{x}_{\mathrm{i}}\right| \mathrm{S}_{\mathrm{i}}^{\mathrm{R}}\right) \leq \mathrm{y} \leq \mathrm{a}_{0}^{\mathrm{P}}+\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}^{\mathrm{P}} \mathrm{x}_{\mathrm{i}}, \\
0, \quad \text { otherwise. }
\end{array}\right.
$$

So $\mu_{\widetilde{A}}(y)$ in (2) is not true but $\mu_{\widetilde{A}}(y)$ in (3) is true.
We consider the following example.
Example. Let $\widetilde{A}_{0}=\left\{S_{0}^{L}=1, a_{0}^{P}=2, S_{0}^{R}=3\right\}$,

$$
\widetilde{A}_{1}=\left\{S_{1}^{L}=1, \quad a_{1}^{P}=4, \quad S_{1}^{R}=6\right\}, \quad \text { and } \quad x_{1}=-2 . \quad \text { Then by } \quad \text { (3), }
$$

$$
\widetilde{Y}=\widetilde{A}_{0}+(-2) \widetilde{A}_{1}=\{\text { left }- \text { side spread }=1+(|-2|) 6=13, \quad \text { peak } \quad \text { point }
$$ $=2+(-2) 4=-6$, right-side spread $=3+(|-2|) 1=5\}=\{13,-6,5\}$. But by (2), we have $\widetilde{Y}=\{3,-6,15\}$ which is not true.

From the expression of (3), we get the constraints of the regression as

$$
1-\frac{y-\sum_{i} a_{i}^{P} x_{i}-a_{0}^{P}}{S_{0}^{L}+\sum_{x_{i} \geq 0}\left|x_{i}\right| s_{i}^{L}+\sum_{x_{i}<0}\left|x_{i}\right| s_{i}^{R}} \geq h
$$

and

$$
1-\frac{a_{0}^{P}+\sum_{i} a_{i}^{P} x_{i}-y}{S_{0}^{R}+\sum_{x_{i} \geq 0}\left|x_{i}\right| s_{i}^{R}+\sum_{x_{i}<0}\left|x_{i}\right| s_{i}^{L}} \geq h
$$

if we have taken membership function value at $h^{- \text {cut. }}$

References

1. Tanaka, H. Vejima, S. and Asia ,K. (1982). Linear regression analysis with fuzzy model, IEEE Trans. Systems Man Cybernet. 12(6), 903-907.
2. Yen, K. K. Ghoshray, S. and Roig, G. (1999). A Linear regression model using triangular fuzzy number coefficients, Fuzzy Sets and Systems 106, 167-177.
[received date : Dec. 2004, accepted date Apr. 2005]

[^0]: 1) First Author : Professor, Department of Mathematics, Myongji University, Kyunggi 449-728, Korea
 E-mail : dhhong@mju.ac.kr
 2) Professor, Department of Electronics and Electrical Engineering, Kyungwon University, Kyunggi 461-701, Korea
 E-mail: ktkim@kyungwon.ac.kr
