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On the Residual Empirical Distribution Function of Stochastic
Regression with Correlated Errorsl)

Issa Fakhre-Zakeri2) and Sangyeol Lee3)

Abstract

For a stochastic regression model in which the errors are assumed to form a
stationary linear process, we show that the difference between the empirical
distribution functions of the errors and the estimates of those errors converges

uniformly in probability to zero at the rate of op(n_l/z) as the sample size n

increases.
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1. Introduction

Consider a stochastic regression model
Yt = B’Xt + Ztv t= 1,2,"' (1)
where Y, is an observed scalar dependent variable, 8= (f; -, B,) is a pX1 vector of

unknown regression coefficients, X, is an observable p -dimensional stationary process with

EX,=0 and FiX,||’)¢, Z, is an unobservable random disturbance which is independent

of X, and is assumed to be a stationary linear process of the form Z,= Zoa,»V,_,- in
=

which V, are independent and identically distributed (i.i.d.) random variables with zero mean

q

and finite variance, laj < ¢/ 7 ¢>0, and ¢>5. Here || || denotes the Euclidean norm. The

setting covers a broad range of stochastic process and time series models; it includes
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finite-parameter distributed lag models (or transfer function models) with serially correlated
errors.

Let ﬁ; denote any estimate of 8- such as the least squares or least absolute deviations
estimate - based on the observations (Y, X)), =+, (Y,,X,), and let Z, denote the t-th
residual (estimated disturbance from the regression) defined by

Z,=Y—B’X, t=12,,n (2)
Let F,(x) = % gI(Z,Sx) denote the empirical distribution function of Z, based on the #

observations. The corresponding residual empirical distribution function is defined by
F(x) = -17 le( Z,<x) (3)

An important application of (3) includes tests of goodness-of-fit of models based on the
sample distribution function. For a review of earlier works on empirical processes, see Shorack
and Wellner (1986). Asymptotic properties of residual empirical processes have been
investigated in regression models with fixed design by Koul (1984) and in AR(p) models by
Boldin (1982). For a detailed exposition of residual empirical process see Koul (1992), Koul and
Surgailis (1997) and Lee and Wei (1999). The purpose of this paper is to establish the
following theorem.

Theorem. Assume that B,— 8= O An “V2) and that F, the distribution function of Z, on
the real line R, is twice differentiable with sup epl|F (x)] { © and sup zer|F (x)| < 0.

Further, assume that
n 3K, = 01 and 2 ICou W, Wyl < <0,

where W, = || X |- EIX,||. Then
SUp ,ep 7 2 Fo(x)— Fo(x) 1=0,1). (4)

2. Proof
The following lemmas are used in the proof of the theorem.

Lemma 1. For each positive integer wm, let F, denote the distribution function of
-1 .

'20 a;V ;. Suppose that F satisfies M := sup ,eglF (x)| < co. Then there exist

=

0<¥<1/2 and a> 1/2, such that sup erF(x)—F , ()| = O(n "), where m, = n".
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Proof. Let

__1 [==]
*
Zim = :Z‘bde"i and Z;, = )Z:ma,-V,_,-,

where m is an integer. For arbitrary &> 0, we write ¢(m, &) = P tL_JIIZ;_mI > e).

By elementary inequalities

— 2
#(m,e) <e zEmaXlStSnZ:,m

0 2 0 2
<€ —2( 2 (Emax IStSnVZt—j) 1/2) < Ce _27!( 12 ldjl) , C>0.
j=m =m

Let us denotee, = n “for some a>1/2, 7, = max  cu«,|Z%,|. Since by assumption

q

laj < ¢ 7% ¢>0, ¢>5, we have

co 2
$ui = d(m,,e,) < Cn ”2”( 2 Ia,i) < n'THO0(n T2TY),
J=my

Consequently, we can find ve(0,1/2) and @) 1/2 such that
¢, = O(n~") for some p>0

7n = 0,(n ¥**%)  for some x>0, @)

8, =28(m,e€,) + 6Me, = O(n ™).
Using (1.6) and (1.7) of Chanda and Ruymgaart (1990), hereafter referred to as (CR), it is
immediate that

sup reflF (%) — F ,,(0)1<6, = O(n ™).

This completes the proof. o

Lemma 2. Suppose that F has bounded first and second derivatives. Let A>(Q. Define
Ufx,y) : R*>R by
Unx,3) = n ™' [IKZ<0)— F)+F»)—-KZ,<9)].

Assume that a,{b, satisfy

n'*(F(b,)— F(a,))—0 as— o,

n(F(b,)—F(a,))— > as— oo,
where a is the number in (5). Then,

P(SUD 4 <x¢y<5) Un(x, | 22) < Cin” exp(— KA + Cn' e,

for sufficiently large n, where the positive constants C;, C,, and K are independent of
A, a,, b,.
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Proof. Define
A
HA) = 22 ‘Zfo log(1+x)dx, A>0; H0)=1.

Using the integration by parts, we see that

(A = 24 "4 (Alog(1+ ) — A+ log (1+ ).
Hence A¢(D)=K, K>0, for sufficiently large A. Now it follows from our assumptions and
Theorem 2.1 of (CR), after substituting m, and ¢, in (5) and (7) for m and ¢, that

P(SUD g<xcys) Un(2, ) [22) < m, Cexp(—Kin"*/m,) + n¢,

<Cin’exp(—Kin'"¥™) + Con'™*

for sufficiently large #. s]

Proof of the Theorem. We only deal with the case where the dimension p of X, is equal

to 1, since the other cases can be handled similarly. Let N, = n?, where

1/2< < min{l,e}, and let %, = sup{x: F(x) = »/N,}, r=1, - N, For
convenience, hereafter we refer to m, as m. Set b, ;= ( B, — X ¢ Observe that

sup cegV 71l Fpiy — Fo(2)|

= sup ,edn ~* ;[I(Z,SH b, — KZ<»]

<A+ A+ A5

where,

Ay = S 1TV S (KZi<0) — K2 St 7))

Ay = ;;I}? |n ~12 Z‘{F(xi Mt b n ) — Flxt )}

Az = o ln ' E\[I(Zt,msxivﬁbn,,)—F(xinﬁbn,f)—F(xivn)-—I(Zt,meivn)]l.

Recall from (7) that 7, defined in (6) is Oﬂ(n_w”). By this and the mean value

theorem, we have that A, =0,(1). To prove A,=0,(1), it suffices to show that

xR
For xe(x, x,+1], K Z, <x+n %) —KZ,<x) is no more than

Ap= SWP ;n—”?g[z(z,s;wn'3/2)—1(Z,Sx)]|=op(1).

(Z<x,01+n =32y — F(x ) 3y ¢ F(x 1) —KZ=<x,.y)

FF(% i+ 1 B = Fx )+ KZ<x ,40) — KZi<x,),
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and a similar argument applies to a lower bound as well. Thus, we have that for sufficiently
large =,

A £ sg’p | ~12 ZI(I(Z,Sxﬂ— n Yy~ F(x 4 n )+ F(x,)— KZ<x )

+ Sl:,p I(n ~1/2) ZI(I(Ztsx,) —F(x r+1) +F(x r) —I(Z,Sx,))l + Op(l)

sup sup
<2 v x,sx<ysx,+1 lUn(x'y)l'f'Op(l)
because x,+n <y 1 for sufficiently large n. Since by Lemma 2, for any A>0,

P Si‘?’ny . U D2 DS CoN,n exp (= Kin 2=y + (14 N,)Cyn 10, (8)

as n—oo, we have A;_0,(1). This proves A;=o0,(1).

Clearly, A3=o0,(1) if

L= eV gll(Z,‘mevL bap—F(x+b, )+ Fx)—KZ,<x)|=0,1). ©)
The first step in establishing (9) is to observe that
M<Aqy+Ap+Ag+Ay,
where

Ay = %P (0 "2 SUKZ uSx b ) = Ful 4 b,0,0+ Fot )= (Z mS )Y,
A = % |0 "V SV (F(x oy + b)) = Flx b, )M,
A =% |n "V SUKZ S o) = Flt )+ Fol ) — KZ w2 )Y,

Ny =5 5 IR~ Fo(o).
It is clear that A3 =0,(1), and A3 =0,(1) due to Lemma 1. Since by Lemma 1,

R F (% 00) = Folx)1=2"20(n "+ n"’N150 as n—oo,
it follows from (2.13) of (CR) that
P(|A 52 )< (N,+1)n' " Cexp(— Kin ™),
for sufficiently large n. Hence A 3= 0,(1).

Now it remains to prove A3 =o0,(1). Toward this end, let

5n,t=Xt/‘/;'l—-_

Since by assumption # ~Y?max <l Xd= 0,(1) and B,—B=0,(n""%), Az =o0,1)

if for any B> 0,
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A, = rT;gB]n—l/z g}l[l(z,‘meﬁ-sEn_,)—Fm(xﬂrSEn,t)+Fm(xr)—I(Zt,mer)] 10
T 10
= Op(l).
Set
s; = —B+2Bi/n, i=0,1,,n
+ sup - _ inf
¢ si<s<s iy St W= g cigs,
Define
dtl =I(Zt,m£xr+ Tﬁ)—Fm(xr_*_ z-i)_*'F‘m(xr)_I(Zt,mer)-
Using Taylor’s series expansion, we see that A, is bounded by
A= S 1 712 53 ]+ 0,(1). an
Write n=mu+ v, For simplicity, assume v=0. Note that
L S X d=0,(n' ), (12)

because by assumption on X,

B B S wed = BXDY < B S 0K wrd = EIXD)
<28 u & 1Co Wy Wesmi)l = O().

Therefore, in view of (11) and (12), (10) will follow as a consequence of the following claim:
for any D>0,

t, ! —-v v _—itn"
Af i= Hln Rt =a (DR SX d<Dnl ) = O(ne ),

for some &0 and w>(. We consider only Ag, since the argument for A3 is similar.

First note that

=1
Al SP( le ZdenmJZ/W u/m - m, ISkSm zleliSDnl ”)

< BHI G 1= wm, FIX id<Dn'™)
= Zlfl( glxmz+43n““D)XP(l u—21120d+ N2V 1 Xp= x5, X oy s 5=

Zom(u—D+RXAF x, o s o (Xl X omu— 1)+ 8-

-1
Given X, "', X m(u—1)+% With Zolmelenl—"D, dhyer, 1=0,-,u—1, are independent,

the conditional mean of d-;[+k is zero and the sum of the conditional variances is bounded by
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Z;{Fm(xr+ Thmis ) — Fu(2,)} < uO(n™ 9+ g{F(er T e ) — F(x,)}

= O(n' """+ 2™,
where we have used Lemma 1 and the mean value theorem. Now using Bernstein’s inequality
[cf. Pollard (1984), page 193], we see that

* —Az(u/m) _ v —tn®
A; < ZIZeXD( O(nl*a—u+n1/2-u)+/‘\/u/m/3) = O(n'e ),

for some {>0 and @>0. Hence A3 =o0,(1), and the proof of the theorem is now complete.
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