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Abstract

The ordinary least squares estimator of the disturbance variance
in the linear regression model with stationary errors is shown to be
asymptotically unbiased when the error process has a spectral density
bounded from the above and away from zero. Such error processes
cover a broad class of stationary processes, including ARMA processes.
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1. INTRODUCTION
Let us consider the linear regression model
y; =Bz te; j=1,...,n, (1.1)

where z; are p x 1 nonstochastic design vectors and the error {¢;} is a strictly
stationary process with mean zero and variance 2. In literature, many re-
searchers have studied the asymptotic properties of the least squares estima-
tor of 8 in the regression model with dependent errors. See, for example,
Solo(1981) and Lai and Wei(1982). In such articles, the error process is as-
sumed to be a stationary process or a sequence of martingale differences.
Although most literatures put their primary interest to the asymptotic
behavior of the least squares estimator itself, Sathe and Vinod(1974) and
Dunfour(1986) focused on that of S2, the sum of least squares residuals di-

vided by n — p. They showed that if Ees’ = 02V, where ¢ = (¢y,...,¢,) and
2

V is a n X n positive definite matrix, £ 5—2 is bounded from the below and the
above by the mean value of the n — p smallest and largest eigenvlaues of V',
respectively. (See also Neudecker(1977, 1978) for related results). Based on
the result, Song(1994) established the asymptotic unbiasedness of S?. The
assumed model of Song(1994) was the linear regression model of which the
error process is either the first order moving average process or the s-th order
autoregressive process.

The objective of this article is to show that under fairly mild condition,
the asymptotic unbiasedness for S? holds for a broad class of stationary error
processes, including ARMA processes. Since the proofs of Song(1994) are
hardly applicable to our setting unless the structure of the error process is
completely known or the covariance matrix V only depends on a finite number
of parameters that can be estimated from data, we here pursue a different
approach to obtain the asymptotic unbiasedness result. The main result of
this article is addressed in Section 2.

2. MAIN RESULTS

Suppose that the data (z1,¥1),---, (zn,ys) are from the regression model
(1.1), and that the error process {¢;;j > 1} is the strictly stationary process
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with the spectral density f such that

O<m:i13ff(v)§supf(v):M<oo.

Note that a large class of stationary processes satisfy the above assumption.
For example, if £; = 332 g axé;—, where {§;} is a sequence of iid random vari-
ables with mean zero and finite variance, and {a;} is an absolutely summable
real sequence with 3% a;2* # 0 for |2| < 1 in the complex plane, the spec-
tral density of {e;} is bounded from the above and away from zero. It is
well-known that such processes include the stationary ARMA processes.

Let ,8 be the least squa.res estimator of 3 and let e; = y; — ﬂ zj, j =

1,...,n, and §? =

j . Notice that

:isg-cg,,, (2.1)
i=1

where

which can be rewritten as

Qn = (i: zie;) (i: %93;) (i z;€5). (2.2)

The above representation turns out to be very useful to establish the
following theorem.

Theorem 1. If n” ' 37, z; m is nonsingular for all sufficiently large n and
converges to a positive deﬁmte matrix ¥ as n goes to infinity, ES? converges
to 0% as n goes to infinity.

Before we proceed, we introduce a lemma useful to prove Theorem 1.

Lemma 1. Suppose that {Y;;t > 1} is a stationary time series of which
spectral density g satisfies

0<m =infg(v) <supg(v) =M < .
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Then if T',, is the covarince matrix of (Y7,...,Y,), it follows that

2nm||z||? < 2 Thz < 2nM||z||*> for all z € R™.

Proof. The lemma follows immediately from the following:

2T,z = /7r > ze 7 f(v)dy,
!
where z = (21,...,2,) (cf. Brockwell and Davis (1990, p. 138)).
Proof of Theorem 1. By (2.1) we have
Qn < n—p

- EXt < ESzgaz,
n n

and therefore it suffices to show that E‘Q—f— — Jasn— .
n
Let

A, = {(mll, .. ,a:ln) € R™; )\min(ijx;) < n(Amin(B) — 6)} , (2.4)
j=1

where Ayin (E) denotes the smallest eigenvalue of any p x p matrix F and §
is a positive number less than Ay (¥). Then in view of (2.2),

Qn = QHI(An) + QnI(A:z)

n

< DoeI(An) + g (Z mm) 1> e5e51P1 (A7) (2.5)
j=1

j=1 j=1
= I, +11,,

where I(-) denotes the indicator function. Let z; = (zy;,...,2,;) . Note that
I, = 0 for all sufficiently large n, and that II, is no more than

(Amin (X)) — 6)"1 Z (n_1/2 ”1 xijsj) .

i=1 =

By Lemma 1, we have

P n P n 2 p n
2rm (n_l ZfoJ) <E), (n_1/2 inj€j> <2rM (n_l ZZQ}?})@G)
i=1j=1 i=1 j=1 -
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where m = inf, f(v) and M = sup, f(v). Since for each i, n™' T7_, zZ,
converges to some constant ¢; > 0 our assumption, ETI, is bounded uniformly

in n and thus lim,,_, EQ,/n = 0. Hence, we establishe the theorem.

3. REMARKS

Note that >°7_;z jmlj are nonsingular for all n > ng once 372 = jz'j is
nonsingular. The condition of n~? Yz jm; converging to a positive definite
matrix is a fairly mild condition and can be found in most regression analysis
texts.

In view of (2.3)-(2.6), we have that

52 n

E— >
o2 T n-p

x 21 M <n"1 szzn:mzj) }

i=1j=1

{1 — (ne?)™! ie?l(ﬁln) + (n0?) M A () — 6)71

It is possible in real pracice to compute lim,,_,q n"! PPIE: jz'j and there-
fore Amin(2) for suitably chosen z;. Let 6, = Apin(Z) — m ' Anin(¥) and
m, = inf,»1{m;n € A%(6,)}, where A,(6..) denotes the set A, with § re-

)

S
placed by é,,. Then E— has a lower bound
o

n 2nm. M PE
1— —=2 _{p? 2
n—p { no2Amin (2) <n ;jzl m”) } '

which suggests as an estimate of the lower bound

n 2rma, M L
1— _aommr -1 2 y
n—p { nS? Apmin (2) (n ;j:I%J) }

where M is a suitable estimate of M that can be obtained from the spec-

tral density estimate based on residuals. (See Chapter 10 of Brocwell and

Davis(1990) for the inference of spectral density of time series). Hence, we
2

are able to estimate the lower bound of E—. It is, however, impossible to
o



240 Sangyeol Lee and Young-Won Kim

estimate the lower bound through the result of Dunfour(1986) since we do
not know the covariance matrix V of (ey,... ,en)'. In fact, V cannot be es-
timated from data unless it only depends on a finite number of parameters.
Even worse, the eigenvalues of large matrices are difficult to compute.

One can easily see that Theorem 1 remains valid when the error process is
a sequence of martingale differences {¢;, ;; 7 > 0}, where {F;} is a sequence
of increasing o-fields, E(s;|7;-1) = 0 for all j and sup, E(¢}|F,-;) < C as.
for a positive constant C > 0.

It is of interest to extend the result of Theorem 1 to the stochastic regres-
sion models, where the regressors z; are random variables. That stochastic
regerssion model case deserves a further investigation and special attention.
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