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Interval Estimation for Sum of Variance Components
in a Simple Linear Regression Model with
Unbalanced Nested Error Structure

Dong Joon Parkl

Abstract

Those who are interested in making inferences concerning linear combination of
variance components in a simple linear regression model with unbalanced nested error
structure can use the confidence intervals proposed in this paper. Two approximate
confidence intervals for the sum of two variance components in the model are
proposed. Simulation study is peformed to compare the methods. The methods are
applied to a numerical example and recommendations are given for choosing a proper
interval.
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1. Introduction

One might be interested in making inferences for a linear function of variance components
in simple linear regression model with unbalanced nested error structure. This model includes
two variance components; one in the primary level and the other in the secondary level of the
model. Since this model written in (2.1) contains regression coefficients and a predictor
variable which are fixed part and a random variable among primary levels which is random
part, it is regarded as a mixed model. The two confidence intervals are proposed in Section 3.
A simulation study is performed in Section 4 to compare the two proposed intervals. The
proposed confidence intervals are applied to a numerical example in Section 5 and Section 6
includes concluding remarks.

2. A Simple Linear Regression Model With
An Unbalanced Nested Error Structure

A simple linear regression model with an unbalanced nested error structure is written as
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Yz'j= /—‘+BX1)'+ Az+ Eif (2)

i=1,...,I; j=1;---’]i

where Y is the j th observation in the 7 th primary level, # and B are unknown
constants, X ; is a fixed predictor variable, and A; and E; are jointly independent normal
random variables with zero means and variances qu and UZE respectively, I > 2, J; = 1,
and J; > 1 for at least one value of 7. A; is an error term associated with the first-stage

sampling unit(primary level) and E; is an error term associated with the second-stage

sampling unit. Model (2.1) is unbalanced since the number of observations in cells are not all
equal.
In order to form confidence intervals on linear functions of the variance components, an

appropriate set of sums of squares is needed. The model is written y = X a + Zu + e

where ¥ is a J X1 vector of observations, X is a J X2 matrix of known values with a
column of 1's in the first column and a column of X ;s in the second column, _a is a 2X1
vector of parameters with u# and £ as elements, Z is a J X[ design matrix with ¢’s and
I's, ie. Z =@, 1, ., #isan I X 1 vector of random effects, e is a J X1 vector cf
random error terms, and J = Z'I,-= 1 Ji . By the assumptions in (2.1) the response variables
have a multivariate normal distribution, y ~ N (X a, 04 ZZ + 0% D ;) where Dj is a

J XJ identity matrix.
3. Confidence Intervals For Sum Of Two Variance Components

In this article we propose two approximate confidence intervals for sum of two variance
components y = oﬂ + o“ZE using the sum of squares proposed by Olsen et al.(1976). The

sum of squares is applied to Ting et al.(1990) method and to generalized p-values approach
proposed by Tsui and Weerahandi(1989) and Khuri(1998).
Olsen et al.(1976), Thomas and Hultquist(1978), and El-Bassiouni(1994) used spectral

decomposition method to obtain following statistics. They proposed a statistic SSM = U U
which is asymptotically chi-squared distributed. E(SSM) = (I — 1) (¢4 + o%/dy) where
Ay is the harmonic mean of positive eigenvalues A; of C, Ay = X,/ (ZL_y7: /), and 7; is

the multiplicity of positive eigenvaluesd;, C = Z' (I— X (X' X) ™! X') Z It was also
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shown that SSM /(% + 0% /Ay) and Rr /0% are independent. The error sum of squares Ry
associated with within regression coefficient estimator is written as Rr = S, — Z?TZ
Sume = ¥ Ty where Sy = oy Il (Y = Vi)% Sume= 01 55 (X
— X% Br= SweSume.T= D;— X (X X)) X", (X" X)) isa
generalized inverse of X " X' and X' =[ X Z 1 In addition, Ry /0% is shown to be a

chi-squared random variable with J — I — 1 degrees of freedom. The expected mean
squares are thus summarized using the distributional properties of error sums of squares

E(S%) = 4 + o> = 6y and (3.1a)

1
An
E(S%)

i

% = Or (3.18)

where S% = SSM/(I — 1) andS% = Ry/(J— I — 1). S% and S% are now used to

construct a confidence interval for sum of two variance components ¥ represented by (3.1a)

and (3.10),
y= 0y + (1 — %wa. (3.2)

An approximate confidence interval on ¥ can therefore be constructed using the method of

Ting et al.(1990). In particular, the 100(1 —2a) two-sided confidence interval for 7 is

1
[Sk + (1—%}1)5% — (L} S + (1—%}1)%‘55“, + (1—%}1)%,25%”5%)2;

1
S% + (1—71;)5% + (H2SY + <1——};)2H§S"T + <1—A—1H>2lesﬁl 221 (3.3)

where F), = F(.1-1.7-1-1p Fo = Fa-a:r-1.7-1-1p Li = 1 = 1 /[F(-0: 1-1,00,
Ly=1/F@ j-rie = 1, Ly = [(F, = D* — L} F; — L31/F, H =
1/ Fauirrne—1, Hi=1-=1/Fq e j-1-100 He = [(1 = F)* — H{ F{
- Hg] [ F, and F (. nm ) is the [ -percentile with degrees of freedom of #; and #,

degrees of freedom with & area to the left. Since 02A> (0, any negative bound is defined to
be zero. Interval (3.3) is referred to as TING method. This TING method is different .from
two confidence intervals, TINGW and TINGU, for ¢ in that TING method (3.3) uses SSM
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proposed by Olsen and other researchers whereas TINGW and TINGU methods of confidence
intervals on o¢% use sums of squares appeared in ANOVA table of model (2.1)(refer Park et

al.(2002)).
Tsui and Weerahandi(1989) and Khuri(1998) methods now apply to (3.2) to construct a

confidence interval ony. From Rr / O% ~ xz( j—1-1), the estimates of 0% are obtained oy
(J ~1-1) s% ] U where s% is an observed value of S%. That is, if a specific value of
6= 0% is given, then an observed value of S4 = fp- xz(]'_l_l)/ (J —I-1) is generated
and random variables of U? are generated by % 7 —1—1 distribution. Similarly, The estimates
of ¢4 are obtained by (I — 1) % / Uy— (J —I-1)s%/(Ayg Uy) where s% is an
observed value of S?u, . That is, if a specific value of @y = o4 + o‘% [Ay is given, an
observed value of S% = @y - x%;—y /(I—1) is generated and random variables of Uj are
generated by xzu_l) distribution. The estimates of 7y are calculated by substituting tae
estimates of ¢4 and 0% into (3.2). That is, they are generated by

I -1 sy

- — U Su _ 1.

(J.—I-1s%
—_— 3.4

7 (3.4)
Accordingly, an approximate 100(1—2e) two-sided confidence interval for ¥ is constructed
by

(G, s Gi1-.] (3.5)

where G, and G-, are, respectively, the a th and 1— @ th percentile of the distribution G

constructed by 7. Interval (3.5) is referred to as GEN method.

4. Simulation Study

The methods proposed in Section 3 are compared using simulation study. The criteria for
analyzing the performance of the methods are; 1) their ability to maintain stated confidence
coefficient, and 2) the average length of two-sided confidence intervals. Although shorter
average interval lengths are preferable, it is necessary that the methods first maintain thke
stated confidence coefficient. Thomas and Hultquist(1978) derived an easily calculated statistics
that is used to construct confidence intervals on variance components in unbalanced case of
one-way random effects model. They used nine designs representing a wide spectrum of
unbalancedness. The middle two unbalanced patterns in Table 1 below were selected from
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design 9 and 2 from Table 1 in Thomas and Hultquist(1978) and the other two patterns were,
respectively, chosen for demonstrating a numerical example in Section 5 and for more common
practical use. '

TABLE 1. Unbalanced Patterns Used in Simulation

Pattern I Ji
1 3 3510
2 3 10 20 40
3 6 510 15 20 25 30
4 10 11155551010 10

Let p = o‘ﬁ /(oﬂ + ozE). Without loss of generality 034 = 1 - 0213 so that p = 02,4
and 1 — p = GZE A; and E; are independently generated from normal populations with

zero means and variance p and 1 — p, respectively, using RANNOR routines of SAS. Any

value of x# and g and any fixed values of X s are used. Then Y s are calculated
according to model (2.1) and generated values for Sﬁl and SZT are substituted into appropriate

formula and confidence intervals of (3.3) and (35) are computed. Values of o are varied from
0.001 to 0.999 in increments of 0.1. Each value of p is simulated 2000 times for each pattern.
Two-sided intervals are computed bhased on equal tailed F-values. Confidence coefficients are
determined by counting the number of the intervals that contain 7. Using the normal
approximation to the binomial, if the true coefficient is 0.90(0.95), there is less than a 2.5%
chance that an estimated confidence coefficient based on 2000 replications will be less than
0.8866(0.9404). The average lengths of the two-sided confidence intervals are also calculated.
Tables 2, 3, 4, and 5 present the results of the simulation for stated 90% and 95%

confidence intervals on 7. The numbers in the body of Tables 2, 3, 4, and 5 report range of
simulated confidence coefficients, average interval lengths, and minimum and maximum values

for the range as p ranges from 0.001 to 0.999. The simulation results for 99% confidence
intervals on ¢ are not shown here because they have exactly same trend as ones for 90%
and 95% confidence intervals on 7. Different combinations of 4 and £ do not affect
simulation results. The wvalues with * in Tables 2 and 3 represent simulated confidence
coefficients less than 0.8866 for 90% confidence intervals on ¥ and 0.9404 for 95%. TING
method is very conservative when p < 0.5 for pattern 1 because the simulated confidence

coefficients are much bigger than 0.9 or 0.85. TING method is too liberal when © < (0.4 for
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TABLE 2. 90% Range of Simulated Confidence Coefficients

Pattern 1 2 3
0 TING GEN TING GEN TING GEN TING GEN
0.001 09530 0.9105 0.9545 0.9165 0.9265 09005 0.8470« 0.899%
0.1 0.9510 0.9110 0.9470 0.9025 0.9315 09110 08635+  0.8960
02 0.9455 0.9070 0.9260 0.9025 0.9235 09005 0.8816%  0.8970
0.3 0.9335 0.9140 0.9045 0.9110 0.9130 0.8985 0.8780+  0.8990
0.4 0.9340 0.9120 0.9110 0.8975 0.8965 0.9000 0.8880 0.9045
0.5 0.9080 0.8995 0.9015 0.9020 0.8910 0.8895 0.9010 0.8890
06 0.9170 0.8960 0.8935 0.9010 0.9050 0.8985 0.9060 0.8940
0.7 0.9145 0.8935 0.8935 0.9105 0.8870 0.8900 0.8985 0.8970
0.8 0.9045 0.8935 0.9000 0.9070 0.9020 0.9000 0.8960 0.9045
0.9 0.8980 0.8970 0.8970 0.8985 0.8955 0.8925 09115  0.8860+
0999 09120 0.8970 0.9075 0.9125 0.8935 0.9040 0.9190 0.9000
MAX 09530 0.9140 0.9545 0.9165 0.9315 0.9110 0.9190 0.9045
MIN  0.8980 0.8935 0.8935 0.8975 0.8870 0.8895  0.8470+ 0.8860+
TABLE 3. 95% Range of Simulated Confidence Coefficients
Pattern 1 2 3
0 TING GEN TING GEN TING GEN TING GEN
0.001  0.9800 0.9585 0.9835 0.9565 0.9645 0.9455 09195+« 0.9525
0.1 0.9785 0.9545 0.9780 0.9515 0.9670 09635 0.9270+  0.9505
0.2 0.9800 0.9555 0.9625 0.9540 0.9690 0.9510 0.9425 0.9480
0.3 0.9690 0.9565 0.9620 0.9530 0.9580 09520 0.9385*  0.9440
04 0.9595 0.9580 0.9425 0.9555 0.9485 0.9540 0.9455 0.9505
0.5 0.9650 0.9515 0.9495 0.9480 0.9565 0.9410 0.9490 0.9415
06 0.9625 0.9490 0.9505 0.9565 0.9405 0.9495 0.9495 0.9490
0.7 0.9420 0.9495 0.9485 0.9525 0.9530 0.9455 0.9600 0.9475
0.8 0.9555 0.9445 0.9570 0.9510 0.9520 0.9480 0.9465 0.9565
09 0.9600 0.9510 0.9525 0.9460 0.9435 0.9425 0.9525 0.9455
0.999  0.9490 0.9485 0.9460 0.9590 0.9580 0.9520 0.9525 0.9500
MAX  0.9800 0.9585 0.9835 0.9590 0.9690 0.9635 0.9600 0.9565
MIN 09420 0.9445 0.9425 0.9460 0.9405 0.9410 09195+« 0.9415
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TABLE 4. 90% Range of Average Interval Lengths

Pattern 2 3 _ 4
0 TING GEN TING GEN TING GEN . TING GEN
0.001  4.8931 8.1532 1.5354 2.0846 0.6088 0.6560 1.0820 1.1891
0.1 6.3293 9.0126 3.2270 3.8384 0.8725 0.9198 1.1783 1.2550
0.2 7.9243 10.0143 5.0128 5.4512 1.1638 1.2067 1.2595 1.3549
0.3 9.2495 11.2606 6.7925 7.2664 1.4434 1.4986 1.3694 1.4430
0.4 10.3255  12.0546 8.3604 8.8032 1.8091 1.8029 1.4733 1.5422
05 11.8025 135760 104851  10.6218 2.1380 2.2105 1.6043 1.6601
0.6 13.7805 154741  11.8562  12.2068  2.5132 2.5292 1.6865 1.7602
0.7 150355 158402  14.3987 135947  2.8430 2.8663 1.8065 1.8265
0.8 16.0754 171787 156405 156265  3.1567 3.2101 1.9643 1.9696
0.9 175622 182204 171147 175500  3.5582 3.5504 2.0522 2.0432
0.999 187191 192593 19.1646  18.2839 3.8836 3.8506 2.1746 2.1635
MAX 187191 192593 19.1646  18.2839 3.8836 3.8506 2.1746 2.1635
MIN  4.8931 8.1532 15354 2.0846 0.6088 0.6560 1.0820 1.1891

TABLE 5. 95% Range of Average Interval Lengths

Pattern 2 3 4
0 TING GEN TING GEN TING GEN TING GEN
0.001  9.4783 16.3502 2.7574 4.0244 0.8042 0.8602 1.4593 1.5438
0.1 12,7415  18.2206 6.5280 7.6946 1.2006 1.2737 1.5528 1.6357
0.2 152230  20.2783 9.8545 11.0626 1.6527 17048 1.7044 1.7713
0.3 188790 229298 139374  14.8076 2.0771 2.1372 1.8312 1.8914
0.4 216431 245458 177547  17.9409 2.6192 2.5822 1.9800 2.0242
0.5 22,7583 277255 209164  21.7133 3.0433 3.1712 2.1327 2.1809
0.6 261632 315588 24.1532 249415 35217 3.6326 2.2626 2.3136
0.7 206617 323651  29.0134  27.8342 4.0513 4.1167 2.3344 2.4006
0.8 342588 351546 314451  31.9583 4.5374 46116 2.56462 2.6879
0.9 354866 373545  36.2419  35.9364 5.1425 5.1037 2.6958 2.6865
0.999 30.2238 393962  38.2388 374129 5.4181 5.5293 2.8916 2.8450
MAX 392238 393962 38238  37.4129 5.4181 5.56293 2.8916 2.8450

MIN

9.4783

16.3502 2.7574 4.0244 0.8042 0.8602 1.4593 1.5438
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pattern 4 because it generates much smaller than the threshold values, 0.8866 or 0.9404.
Except these values of o TING method generates the simulated confidence coefficients close
to 0.9 or 0.95. GEN method generally maintains the stated confidence coefficients through four
patterns although its avérage interval lengths are slightly wider than TING method.

5. An Example

The methods proposed in Section 3 are applied to a data set. Scheffe (1959, p. 216) wrote a
data set of 94 observations for seven types of starch film. The dependent variable in the data

set is the breaking strength in grams and the independent variable is the thickness in 10 ~*
inch from tests of starch film. The data set was constructed by selecting three types of
starch, Potato, Canna, and Wheat. In order to conform to pattern 1 in Table 1 three
observations are selected from Potato, five from Canna, and ten from Wheat. This data set is
used to fit the simple linear regression model of the breaking strength on the thickness of
starch film assuming an unbalanced nested error structure. The selected data set was listed in
Table 6. A necessary SAS code was programmed and the resulting 90% and 95% confidence

intervals on ¥ were given in Table 7.

TABLE 6. The Data Set Used for Example

Type
Observation Potato Canna Wheat
Y X Y X Y X
1 983.3 13.0 791.7 7.7 263.7 5.0
2 958.8 133 610.0 6.3 130.8 35
3 7478 10.7 710.0 8.6 382.9 4.7
4 940.7 11.8 3025 4.3
5 990.0 124 213.3 3.8
6 132.1 3.0
7 292.0 42
3 3155 45
9 262.4 43
10 314.4 41

From SAS output and E(Shm) = 010%4 + 0% in Park(2002, (4:1a) the estimator ?)‘Az is
computed as 12517.76 and from E( 52T) = o‘% the estimator Ao‘Ez is computed as 3063.89. Therefore,

the estimate of the ratio of variance in the primary unit to total variance 27 is approximately 0.8. In this
case TING method should be used because it keeps the stated confidence level and generates shorter
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average interval length than GEN method for ©¢ = (.8 in pattern 1. The calculated 90% and 95%
confidence intervals in Table 7 are consistent with the simulation study in Section 4.

TABLE 7. Confidence Intervals on 7y

90% confidence interval 95% confidence interval

Methods Lower Bound Upper Bound Length Lower Bound Upper Bound Length
TING 4,382.5 208,119.3 203,736.8 3,659.5 420,776.3 417,116.8
GEN 12,262.6 948,612.8 936,350.4 9,491.3 1,891 571.3 1,882,079.9

6. Conclusion

One might often confront with making inferences on variance components. This note
proposes two approximate confidence intervals for sum of two variance components in a
simple regression model with unbalanced nested error structure. The two approximate
confidence intervals use the sum of squares proposed by Olsen et al.(1976), Thomas and
Hultquist(1978), and El-Bassiouni(1994). The sum of squares is applied to Ting et al.(1990)
method and to generalized p-values approach proposed by Tsui and Weerahandi(1989) and
Khuri et al.(1998).

The two methods finding confidence interval for sum of two variance components,

y = ozA + o‘rﬁ; using the sum of squares proposed by researchers mentioned above in
general vield simulated confidence coefficients close to stated confidence levels unlike methods
using the sums of squares appeared in ANOVA table to find 0‘34 in the model as Park et
al.(2002) show. TING method generates somewhat conservative simulated confidence
coefficlents when p < 0.5 for pattern 1 in Table 1 whereas it is liberal for o < 0.4 for

pattern 4. GEN method generally maintains the stated confidence coefficients across all
patterns in Table 1 except one case in pattern 4. The GEN method gives slightly wider
average interval lengths than TING method. Therefore, except o < 0.4 in pattern 4 TING or
GEN method should be selected depending on shorter average interval length for constructing

confidence interval for 7 in the model as Tables 3 and 4 suggest.
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