• Title/Summary/Keyword: LET-R

Search Result 841, Processing Time 0.03 seconds

Some Remarks on Faithful Multiplication Modules

  • Lee, Dong-Soo;Lee, Hyun-Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.6 no.1
    • /
    • pp.131-137
    • /
    • 1993
  • Let R he a commutative ring with identity and let M be a nonzero multiplication R-module. In this note we prove that M is finitely generated if M is a faithful multiplication R-module.

  • PDF

ON 3-ADDITIVE MAPPINGS AND COMMUTATIVITY IN CERTAIN RINGS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.41-51
    • /
    • 2007
  • Let R be a ring with left identity e and suitably-restricted additive torsion, and Z(R) its center. Let H : $R{\times}R{\times}R{\rightarrow}R$ be a symmetric 3-additive mapping, and let h be the trace of H. In this paper we show that (i) if for each $x{\in}R$, $$n=<<\cdots,\;x>,\;\cdots,x>{\in}Z(R)$$ with $n\geq1$ fixed, then h is commuting on R. Moreover, h is of the form $$h(x)=\lambda_0x^3+\lambda_1(x)x^2+\lambda_2(x)x+\lambda_3(x)\;for\;all\;x{\in}R$$, where $\lambda_0\;{\in}\;Z(R)$, $\lambda_1\;:\;R{\rightarrow}R$ is an additive commuting mapping, $\lambda_2\;:\;R{\rightarrow}R$ is the commuting trace of a bi-additive mapping and the mapping $\lambda_3\;:\;R{\rightarrow}Z(R)$ is the trace of a symmetric 3-additive mapping; (ii) for each $x{\in}R$, either $n=0\;or\;<n,\;x^m>=0$ with $n\geq0,\;m\geq1$ fixed, then h = 0 on R, where denotes the product yx+xy and Z(R) is the center of R. We also present the conditions which implies commutativity in rings with identity as motivated by the above result.

ASYMPTOTIC BEHAVIOR OF GENERALIZED SOLUTIONS IN BANACH SPACES

  • Lee, Gu-Dae;Park, Jong-Yeoul
    • Bulletin of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.123-132
    • /
    • 1986
  • Let X be a real Banach space with norm vertical bar . vertical bar and let I denote the identity operator. Then an operator A.contnd.X*X with domain D(A) and range R(A) is said to be accretive if vertical bar x$_{1}$-x$_{2}$ vertical bar.leq.vertical bar x$_{1}$-x$_{2}$+r(y$_{1}$-y$_{2}$) vertical bar for all y$_{i}$.mem.Ax$_{i}$, i=1, 2, and r>0. An accretive operator A.contnd.X*X is m-accretive if R(I+rA)=X for all r>0.r>0.

  • PDF

UNIT-REGULARITY AND STABLE RANGE ONE

  • Chen, Huanyin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.653-661
    • /
    • 2010
  • Let R be a ring, and let $\Psi$(R) be the ideal generated by the set {x $\in$R | 1 + sxt $\in$ R is unit-regular for all s, t $\in$ R}. We show that $\Psi$(R) has "radical-like" property. It is proven that $\Psi$(R) has stable range one. Thus, diagonal reduction of matrices over such ideal is reduced.

ON PRIME AND SEMIPRIME RINGS WITH SYMMETRIC n-DERIVATIONS

  • Park, Kyoo-Hong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.451-458
    • /
    • 2009
  • Let $n{\geq}2$ be a fixed positive integer and let R be a noncommutative n!-torsion free semiprime ring. Suppose that there exists a symmetric n-derivation $\Delta$ : $R^{n}{\rightarrow}R$ such that the trace of $\Delta$ is centralizing on R. Then the trace is commuting on R. If R is a n!-torsion free prime ring and $\Delta{\neq}0$ under the same condition. Then R is commutative.

  • PDF

IDEALS AND SUBMODULES OF MULTIPLICATION MODULES

  • LEE, SANG CHEOL;KIM, SUNAH;CHUNG, SANG-CHO
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.933-948
    • /
    • 2005
  • Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that N = 1M. Let M be a non-zero multiplication R-module. Then we prove the following: (1) there exists a bijection: N(M)$\bigcap$V(ann$\_{R}$(M))$\rightarrow$Spec$\_{R}$(M) and in particular, there exists a bijection: N(M)$\bigcap$Max(R)$\rightarrow$Max$\_{R}$(M), (2) N(M) $\bigcap$ V(ann$\_{R}$(M)) = Supp(M) $\bigcap$ V(ann$\_{R}$(M)), and (3) for every ideal I of R, The ideal $\theta$(M) = $\sum$$\_{m(Rm :R M) of R has proved useful in studying multiplication modules. We generalize this ideal to prove the following result: Let R be a commutative ring with identity, P $\in$ Spec(R), and M a non-zero R-module satisfying (1) M is a finitely generated multiplication module, (2) PM is a multiplication module, and (3) P$^{n}$M$\neq$P$^{n+1}$ for every positive integer n, then $\bigcap$$^{$\_{n=1}$(P$^{n}$ + ann$\_{R}$(M)) $\in$ V(ann$\_{R}$(M)) = Supp(M) $\subseteq$ N(M).

ON THE ANNIHILATOR GRAPH OF GROUP RINGS

  • Afkhami, Mojgan;Khashyarmanesh, Kazem;Salehifar, Sepideh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.331-342
    • /
    • 2017
  • Let R be a commutative ring with nonzero identity and G be a nontrivial finite group. Also, let Z(R) be the set of zero-divisors of R and, for $a{\in}Z(R)$, let $ann(a)=\{r{\in}R{\mid}ra=0\}$. The annihilator graph of the group ring RG is defined as the graph AG(RG), whose vertex set consists of the set of nonzero zero-divisors, and two distinct vertices x and y are adjacent if and only if $ann(xy){\neq}ann(x){\cup}ann(y)$. In this paper, we study the annihilator graph associated to a group ring RG.

BOUNDS ON PROBABILITY FOR THE OCCURRENCE OF EXACTLY r, t OUT OF m, n EVENTS

  • Lee, Min-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.393-401
    • /
    • 1997
  • Let $A_1,A_2,\cdots,A_m$ and $B_1,B_2,\cdots,B_n$ be two sequences of events on a given probability space. Let $X_m$ and $Y_n$, respectively, be the number of those $A_i$ and $B_j$, which occur we establish new upper and lower bounds on the probability $P(X=r, Y=t)$ which improve upper bounds and classical lower bounds in terms of the bivariate binomial moment $S_{r,t},S_{r+1,t},S_{r,t+1}$ and $S_{r+1,t+1}$.

  • PDF

FIRST PASSAGE PROBLEM FOR WIENER PATHS CROSSING DIFFERENTIABLE CURVES

  • Jang, Yu-Seon;Kim, Sung-Lai;Kim, Sung-Kyun
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.475-484
    • /
    • 2005
  • Let W(t) be a Wiener path, let $\xi\;:\;[0,\;{\infty})\;\to\;\mathbb{R}$ be a continuous and increasing function satisfying $\xi$(0) > 0, let $$T_{/xi}=inf\{t{\geq}0\;:\;W(t){\geq}\xi(t)\}$$ be the first-passage time of W over $\xi$, and let F denote the distribution function of $T_{\xi}$. Then the first passage problem has a unique continuous solution as following $$F(t)=u(t)+{\sum_{n=1}^\infty}\int_0^t\;H_n(t,s)u(s)ds$$, where $$u(t)=2\Psi(\xi(t)/\sqrt{t})\;and\;H_1(t,s)=d\Phi\;(\{\xi(t)-\xi(s)\}/\sqrt{t-s})/ds\;for\;0\;{\leq}\;s.

KRULL DIMENSION OF HURWITZ POLYNOMIAL RINGS OVER PRÜFER DOMAINS

  • Le, Thi Ngoc Giau;Phan, Thanh Toan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.625-631
    • /
    • 2018
  • Let R be a commutative ring with identity and let R[x] be the collection of polynomials with coefficients in R. There are a lot of multiplications in R[x] such that together with the usual addition, R[x] becomes a ring that contains R as a subring. These multiplications are from a class of functions ${\lambda}$ from ${\mathbb{N}}_0$ to ${\mathbb{N}}$. The trivial case when ${\lambda}(i)=1$ for all i gives the usual polynomial ring. Among nontrivial cases, there is an important one, namely, the case when ${\lambda}(i)=i!$ for all i. For this case, it gives the well-known Hurwitz polynomial ring $R_H[x]$. In this paper, we completely determine the Krull dimension of $R_H[x]$ when R is a $Pr{\ddot{u}}fer$ domain. Let R be a $Pr{\ddot{u}}fer$ domain. We show that dim $R_H[x]={\dim}\;R+1$ if R has characteristic zero and dim $R_H[x]={\dim}\;R$ otherwise.