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BOUNDS ON PROBABILITY FOR THE OCCURRENCE
OF EXACTLY », t OUT OF m, n EVENTS

MiIN-YoOuNG LEE

ABSTRACT. Let Ay, A2, -+, Am and By, Bs,--- , B, be two sequenc-
es of events on a given probability space. Let X,,, and Y, respectively,
be the number of those A; and B; , which occur we establish new
upper and lower bounds on the probability P(X = r, Y = t) which
improve upper bounds and classical lower bounds in terms of the
bivariate binomial moment S, , Sr41,t » Srir1 and Spqq 4.

1. Introdution

Let Ay, As,---, Ay, and By, By, -, B, be two sequences of events
on the same probability space. Let X = X,,(4) and Y = Y,,(B) ,
respectively, be the number of those A; and B, , which occur. Put
So,0 = 1 and for integers » > 1 and t > 1, set

(1) Spi = P(Ay, NAy,N---NA; NBj NBj,N---By,)

where the summation ) is over all subscripts satisfying 1 < i «< iy <
o <ir<mand 1< g <jo <o < jy <.t can easily be proved, by
turning to the method of indicators, that S,; , 1 <r <m, 1<t <n,is
called the binomial moment of the vector (X,Y’), namely,
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Bounds by linear combinations of the binomial moments S;,; on the
distribution of the vector (X, Y") are called Bonferroni-Type Inequalilities
(B-T-I). There are two reasons for developing B-T-I. It can be utilized
for obtaining limit theorems for normalized multivariate order statistics
[see Galambos ] and for actual computations of the bounds for fixed m
and n. But the mentioned inequalities may become impractical for one
of two reasons ; either (i) S, is known only for a very limited number
of the values of r and t, or (ii) Syt is so large that the successive terms,
providing the upper and lower bounds, become trivial (Upper bounds
exceed one and lower bounds become negative).

In this paper, we establish new upper and lower bounds on the dis-
tribution
P(X =rY = t) which improve classical upper bounds and lower bounds
in terms of S,-,t, Sr—i—l,t , ST,t+1 and Sr+1’t+1.

2. The Results

Using the notation of the introduction, we shall prove the following
results.

THEOREM 1. For integersr,t ,m andn with1 <r < m , 1 <t <mn,
@) P(X=rY =t) 2min(S; — (r +1)Sry1,¢ , St — (t+1)Spe11)
It is shown by Meyer that
(4) PX=7Y =t)2>8,:~(r+1)Sy1: — (t +1)Sp i1

Thus, it is obvious that inequality (3) is better than (4).

THEOREM 2. For integersr, t ,mand n with1 < r < m, 1 <t<n,

P(X =T, Y = t) 2 Sr,t — (T' + l)Sr+1’t - (t + I)Sr’t+1
(5) (m+n—r—t-1)
T

(T' + 1)(t -+ I)Sr+l,t—{—1-

Thus, it is obvious that inequality (5) is better than (4) if we know
Sri1,t41-
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THEOREM 3. Forintegersr, t, mandnwithl <r<m, 1<t <n,

1 t+1
(6) P(X:T‘,Y:t) Smin(Sr,t—;trSrH,t y S t_—i*SrH—l)

It is shown by Galambos and Lee(1994) that

(r+1)(t+1

(7) PX =nY =1) < Sne— s

Sr+1,t+l-
)
Thus, it is obvious that inequality (6) is better than (7).
THEOREM 4. For integersr, t , mand n with1 <r <m,1 <t < n,

(r+1) (t+1)
PX=rY=t)<S5,— (m )Sr+1,t - (—n':"'t’)'sr,t+1

(8)

1)+ )
(m—r)(n g T

This inequality is same as that of Galambos and Xu(1995).

3. proofs
PRrROOF OF THEOREM 1. We use the method of indicators. Let

{1 X =randY =t
t) =

I(X=rY=t)=I(X=r)I(Y = _ .
0 if otherwise

By using binomial moment of (2) and the method of indicators, the right
hand side of (3) becomes

mne|(7) () -e+( ) () () ()
- () ()
:minE[<):) (f)(l—i—r—-X , 1+t—Y)]
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Since E[I(X = r,Y =¢)] = P(X = r,Y =t) , and thus in order to
prove (3), it suffices to show that

Y
t

(9) I(X:T)I(Y:t)Zmin[():)( )(1+7'—X, 1+t—Y)J
Note that both sides of (9) are zero if either X or Y is less than r or
t, respectively. Also, both sides of (9) are one if X and Y equal r and t,
respectively. Thus, we have to prove that
(10) f(X,Y) = ( the right hand side of (9))is non-negative for X = r
andY >¢t+1, X >r+1landY =t¢, X>r+landY >t+1.
(i) First case. For positive integers r, t with X = r and Y >t+1;
that is, there are the events that exactly r A; and at least t+1 B; which
occur. Then

Fr t+p) :min{c—:p) (1, 1+t—(t +p)):i

t
_—_( —:p>(1—p) < 0 for integer p with 1 <p<n-—t.

(ii) Second case. For positive integers r, t with X > r+1and ¥ = ¢ ;
that is, there are the event that exactly t B; and at least r +1 A, which
occur. Then

f(r+q,t):min[(r—:q) <1+T-(r+q),1)] - (’"jq>(1—q) <0

for integer ¢ with 1 < g <n —r.

(iil) Third case. For positive integers r, t, X and Y with r + 1 < X
and t + 1 <Y, that is, there are the events that at least r+1 A; and at
least t4+1 B; which occur. Then

f(r+q,t+p) = mm[(r +q) (t +p) <1+r—(r+p), 1+t—(t+p)\)} <0

T t

/

for integers p, g with 1 <p <n—t, 1 < g < m —r. Hence, we get (10).
This completes the proof. a
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PROOF OF THEOREM 2. We use the method of indicators. Let

1 f X=rand Y =t¢

I{X=rY=))=1X=r)I(Y =t) =
( " ) ( I ) {0 if otherwise.

By using binomial moment of (2) and the method of indicators, the right
hand side of (5) becomes

EW:) C/) S ”(il) (}t/) Sl ”(f) (tL)

et e (L) (1)

A{E)Cperrir

(m+n—r—t—1
(m—=r)(n—1t)

)(X —r)(Y — t)]].

Then E[I(X =rY = t)] = P(X =r,Y =t), and thus in order to prove
(5), it suffices to show that
(X =) [(Y =t) > (f) (}t/) [1+r+1 X -Y+

(m+n—r—t—1)
(m—7r)(n—1t)

(X = )Y - t)}

Note that both sides of (11) are zero if either X or Y is less than r or
t, respectively. Also, both sides of (11) are one if X and Y equal r and
t, respectively. Thus, we have to prove that
(12) f(X,Y) = (the right hand side of (11) is non-negative) for X = r
andY >t+1, X>r+landY =¢ X>r+landY >¢+1.

(i) First case. For positive integers r, t with X = r and Y > ¢t + 1;
that is, there are exactly r A; and at least ¢t + 1 B; which occur. Then

flrit+p) = (t:p>[1+t—(t+p)] <0

for integer P with 1 < p < n — t. Hence, we get (12).
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(ii) Second case. For positive integers r,t with X >r+1land ¥ =1,
that is, there are at least r + 1 A; and exactly t B; which occur. Then

fr+q,t) = (r:q>[1+r—(r+q)] SO"

for integer ¢ with 1 < ¢ < m — r. Hence, we get (12).

(iii) Third case. For positive integers r, t, X and Y with r + 1 <X
and t + 1 < Y’ that is, there are at least r + 1 A, and at least t -+ 1 B;
which occur. Then

frtat+p) = (r—:q) <t+p> [1——q—p+ (m+n—r—~t—1)pq

t (m—r)(n-—1t)

for integers p g with 1 <p<n-—t, 1<qg<m—r. Let 9(g,p) =1—qg—
(m+n—-—r—t—1) ‘

p+

(m—r)(n—t)

attains its maximum at end point, yielding g(m - r,n —t) = 0. Thus,

f(r+g,t+p) is less than zero and equals zero. Hence, we get (12). This

completes the proof. O

pq- Then g(q,p), 1<g<m-r, 1<p<n-—t,

PROOF OF THEOREM 3. We have to prove that the following inequal-
ities hold ; that is,

1
(13) P(X = T,Y = t) S Sr,t — r+ Sr_+ 1t and
m—7T
t+1
(13/) P(X - T,Y = t) < Sr‘,t — ;—':__—tsr’t+1

By using the method of indicators and binomial moment of (2), they
become

(4)  I(X =n)I(Y =1) < (’: ) (}t/) I (Tf 1) (’;) and

’

e 0= () ()
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Thus, by proving (14) and (14') we obtain (13) and (13') by taking
expectations. First, note that both (14) and (14’ ) are valid if either X
or Y is less than r or t, respectively, and both sides of (14) and (14)
are one if X and Y equal r and t, respectively. Hence, for the sequel, we
assume that X > r +1 andY>t X2>2randV >t+1, X>r+1
and Y > ¢ + 1. Thus, (14) becomes

0=I{X=nrI(Y=t)< <):)C/> []‘i::J

Now, h(X ( )(Y) [1 — -&7] , T < X < m, attains its minimum

at © = m, yleldmg h(m) = 0. Hence, we get (14).
The proof of (14’) is identical to the above argument. The proof is
completed. O

PROOF OF THEOREM 4. We also use the method of indicators.

1 # X=7r andY =1¢

0 if otherwise.

Let I(X:r,Y:t):I(X:r)I(Y:t):{

By using binomial moment of (2) and the method of indicators, the right
hand side of (8) becomes

)0 5= ()0 -5 ()
Tt ) ()]
=[O C-0=3- 55 - =)

ThenEI(X =rY =t) = P(X =rY = t), and thus in order to prove
(8), it suffices to show that

[ [T (- B N Sy
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Note that both sides of (15) are zero if either X or Y is less than r or t,
respectively. Also, both sides of (15) are one if X and Y equal r and t,
respectively. Thus, we have to prove that
(16) f(X,Y) = the right hand side of (15) > 0 for X = r and ¥ >
t+1, X>r+landY =¢ X>r+landy >t+1.

(1) First case. For positive integers r,t with X = r and Y > ¢ + 1
that is, there are exactly r A; and at least ¢t + 1 B; which occur. Then

flrt+p) = (t:p> [1_ (npit}} 20

for integer P with 1 < p < n — t. Hence, we get (16).
(ii) Second case. For positive integers r,t with X > r+1 and Y = ¢;
that is, there are at least r + 1 A; and exactly t B; which occur. Then

N G S I

for integer q with 1 < ¢ < m — r. Hence, we get (16).

(iii) Third case. For positive integers r, t, X and Y withr +1 < X
and t + 1 <Y that is, there are at least » + 1 A; and at least ¢ + 1 B;
which occur. Then

esain = (T () e o e

for integers p,q with 1 <p<n-—t, 1 <g<m—r. Let

3 - q P qp
g(q’p) - I:l (m_r) (’n,—t) + (m—’f')(n—t):l

Then

sap) — Mm@t =p)

(m—r)(n—1t) 20

for1<g<m-—r, 1<p<n-—t Thus, f(r+q.t+p)is greater than
zero and equals zero. Hence, we get (16). This completes the proof. O
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