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ON THE ANNIHILATOR GRAPH OF GROUP RINGS

Mojgan Afkhami, Kazem Khashyarmanesh, and Sepideh Salehifar

Abstract. Let R be a commutative ring with nonzero identity and G be
a nontrivial finite group. Also, let Z(R) be the set of zero-divisors of R
and, for a ∈ Z(R), let ann(a) = {r ∈ R | ra = 0}. The annihilator graph
of the group ring RG is defined as the graph AG(RG), whose vertex set
consists of the set of nonzero zero-divisors, and two distinct vertices x and
y are adjacent if and only if ann(xy) 6= ann(x) ∪ ann(y). In this paper,
we study the annihilator graph associated to a group ring RG.

1. Introduction

Let R be a commutative ring with nonzero identity, and let Z(R) be the
set of zero-divisors of R. If X is a subset of R, then the annihilator of X is
the ideal ann(X) = {r ∈ R | rX = 0}. The Jacobson radical of R is denoted
by J(R). For any subset Y of R, the cardinality of Y is denoted by |Y |. Put
Y ∗ = Y \{0}. Let G be a finite group that is defined multiplicatively. Also we
denote the cyclic group of order n by Cn, and a finite field with q elements by
Fq.

The concept of the zero-divisor graph of a commutative ring R, denoted by
Γ(R), was introduced by Beck in [12], who let all elements of R be vertices
and was mainly interested in colorings. The work of Beck is further continued
by Anderson and Naseer in [6] and, for other graph theoretical aspects, by
Anderson and Livingston in [5]. While they focus just on the zero-divisors of
the rings, there are many other kinds of graphs associated to ring, some of which
are extensively studied, see for example [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 14, 20].

In [9], Badawi introduced the concept of the annihilator graph for a com-
mutative ring R, which is denoted by AG(R). The annihilator graph AG(R)
is an undirected graph whose vertex set is the set of all nonzero zero-divisors
of R, and two distinct vertices x and y are adjacent if and only if ann(xy) 6=
ann(x) ∪ ann(y). Also, the annihilator graph of a commutative semigroup is
studied in [1].
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Let RG be a commutative group ring and Z(RG) be its set of zero-divisors.
In this paper, we study the annihilator graph of the group ring RG, which
is denoted by AG(RG). Also, we examine the planarity, outerplanarity of
AG(RG) and some properties of the line graph of AG(RG).

Let G be a graph with vertex set V (G). For distinct vertices x, y ∈ V (G),
we use the notation x ∼ y to say that x and y are adjacent. The distance

between two distinct vertices x and y in G is the number of edges in a shortest
path connecting them and it is denoted by d(x, y). The diameter of a connected
graph G, denoted by diam(G), is the maximum distance between any pair of
the vertices of G. The degree of a vertex v of G, denoted by deg(v), is the
number of edges of G incident with v such that the maximum degree of a
graph G, denoted by △(G). The girth of G, denoted by gr(G), is the length of
a shortest cycle in G. If G does not contain a cycle, then gr(G) is defined to
be infinity. The complete graph is a graph in which any two distinct vertices
are adjacent. A complete graph with n vertices is denoted by Kn. A bipartite

graph is a graph whose vertices can be partitioned into two disjoint sets U and
V such that every edge connects a vertex in U to one in V . A complete bipartite

graph is a bipartite graph in which every vertex of one part is adjacent to every
vertex of the other part. If the size of one of the parts in a complete bipartite
graph is 1, then the complete bipartite graph is said to be a star graph . The
line graph L(G) of G is the graph whose vertices correspond to the edges of G
and two vertices of L(G) are adjacent if and only if the corresponding edges of
G are adjacent.

2. Preliminaries

Throughout the paper, R is a nontrivial commutative ring and G is a non-
trivial Abelian group. A group ring RG is a construction which involves a
group G and a ring R. The group ring is a ring and the underlying set consists
of formal sums

∑

g∈G agg (ag ∈ R, g ∈ G)

for which all but finitely many coefficients ag are zero. The addition of two
elements of RG is defined point-wise

∑

g∈G agg +
∑

g∈G bgg =
∑

g∈G(ag + bg)g,

and the multiplication is defined by

(
∑

g∈G agg)(
∑

g∈G bgg) = (
∑

g∈G cgg),

where

cg =
∑

e∈G agbe.

If this multiplication seems strange, it will surely help to notice that this is ex-
actly what we would get by requiring that (agg)(bhh) = (agbh)gh and that the
multiplication map RG×RG −→ RG is additive in both arguments. The above
definitions make RG into a commutative ring with nonzero identity 1R.1G.
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Clearly, if R and G are commutative, then RG is commutative. We can define
an action of the ring R on RG by

r.
∑

g∈G agg =
∑

g∈G(rag)g.

This definition makes RG into a left R-module. The group ring is then a free
R-module with basis consisting (of copies) of elements of G, and it is of rank
|G|. Indeed, {1Rg : g ∈ G} is a basis for RG. So if R and G are finite, then
|RG| = |R||G|.

If RG is a group ring and X is a finite subset of G, then X̂ := Σx∈Xx. In

particular, if X = G such that |G| < ∞, then Ĝ = Σg∈Gg. Ĝ ∈ Z(RG), since

Ĝ(1− g) = 0.
The following lemmas are needed for the rest of the paper.

Lemma 2.1. The following statements hold.

(i) RG ≇ Z2 × Z2;
(ii) RG ≇ Z2 × Z2 × Z2.

Proof. If RG is isomorphic to Z2 ×Z2, then |RG| = 4. So R ∼= Z2 and G ∼= C2

such that G = {1, g}. It is easy to see that Z(Z2 × Z2) = {(0, 0), (0, 1), (1, 0)}

and Z(Z2C2) = {0, Ĝ}. Hence Z2C2 ≇ Z2 × Z2. Also, if RG is isomorphic
to Z2 × Z2 × Z2, then R ∼= Z2 and G ∼= C3 such that G = {1, g, g2}. RG ≇
Z2×Z2×Z2, since Z(Z2×Z2×Z2) = Z2×Z2×Z2 \{(1, 1, 1)} and Z(Z2C3) =

{0, Ĝ, 1− g, 1− g2, g − g2}. So the proof is completed. �

Lemma 2.2. If |RG| = 9, then RG ∼= Z3 × Z3.

Proof. Suppose that |RG| = 9. Then R ∼= Z3 and G = {1, g} ∼= C2. So

Z(RG) = {0, Ĝ, 2Ĝ, 1 + 2g, 2+ g}. Thus RG is a nonlocal ring. We know that
RG is a finite commutative ring. So RG is a direct product of at least two local
rings. On the other hand, |RG| = 9. So RG ∼= Z3 × Z3. �

Lemma 2.3. If AG(RG) is a complete graph, then R is a local ring, G is a

p-group, and p ∈ J(R).

Proof. Since RG is a finite ring, RG ∼= R1×· · ·×Rn such that Ri is a local ring
for 1 ≤ i ≤ n. If n ≥ 3, then, by [9, Theorem 2.2], d((0, 1, 0, . . . , 0), (1, 1, 0, . . .,
0)) = 2 in AG(RG). So n ≤ 2. Suppose that RG ∼= R1 × R2 with |R2| ≥ 3.
Then d((0, 1), (0, r)) = 2 in AG(RG), where 1 6= r ∈ R∗

2. If |R1| = |R2| = 2,
then RG ∼= Z2 × Z2, which is impossible, by Lemma 2.1. Hence RG is a local
ring. So, by [19], the proof is completed. �

3. Some properties of AG(RG)

We begin this section with the following proposition which is obtained from
[9, Theorem 2.2] and [9, Corollary 2.11].

Proposition 3.1. The following statements hold.

(i) AG(RG) is connected and diam(AG(RG)) ≤ 2;
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(ii) gr(AG(RG)) ∈ {3, 4,∞}.

Theorem 3.2. gr(AG(RG)) = gr(Γ(RG)).

Proof. Clearly, Γ(RG) is a spanning subgraph of AG(RG). By [2, Propo-
sition 2.8], gr(Γ(RG)) = 3 if and only if RG is neither Z2C2 nor FprCq

such that FprCq
∼= Fq1 × Fq2 . First, we show that gr(Γ(RG)) = 3 if and

only if gr(AG(RG)) = 3. Suppose that gr(Γ(RG)) = 3, which implies that
gr(AG(RG)) = 3. If gr(AG(RG)) = 3, then, by [9, Corollary 2.11], gr(Γ(RG))
∈ {3, 4,∞}. Let gr(Γ(RG)) = ∞. Then, by [2, Proposition 2.8.1], RG ∼= Z2C2.
Hence AG(RG) ∼= K1. Thus gr(AG(RG)) = ∞, which is impossible. Now,
suppose that gr(Γ(RG)) = 4. Then, by [2, Proposition 2.8.2] and Lemmas
2.1 and 2.2, RG ∼= F1 × F2 such that F1 and F2 are fields with at least three
elements. In this situation, AG(F1 × F2) is a complete bipartite graph. Hence
gr(AG(RG)) = 4, which is impossible. So gr(Γ(RG)) = 3.

Now, we show that gr(AG(RG)) = 4 if and only if gr(Γ(RG)) = 4. Let
gr(AG(RG)) = 4. Then, by [2, Proposition 2.8], gr(Γ(RG)) ∈ {4,∞}. If
gr(Γ(RG)) = ∞, then, by [2, Proposition 2.8], RG ∼= Z2C2. Thus AG(RG) ∼=
K1, and so gr(AG(RG)) = ∞, which is impossible. Thus gr(Γ(RG)) = 4.
Now, if gr(Γ(RG)) = 4, then, by Proposition 3.1, gr(AG(RG)) ∈ {3, 4}. By
the above argument, gr(AG(RG)) = 3 if and only if gr(Γ(RG)) = 3. So we
conclude that gr(AG(RG)) = 4.

Finally, let gr(AG(RG)) = ∞. Then clearly, gr(Γ(RG)) = ∞. If gr(Γ(RG))
= ∞, then, by [2, Proposition 2.8], RG ∼= Z2C2. Hence AG(RG) ∼= K1.
Therefore gr(AG(RG)) = ∞. �

4. Planarity of AG(RG)

In this section, we investigate when AG(RG) is planar, outerplanar or ring
graph whenever RG is a finite ring.

Recall that a graph is said to be planar if it can be drawn in the plane, so
that its edges intersect only at their ends. A subdivision of a graph is any graph
that can be obtained from the original graph by replacing edges by paths. A
remarkable characterization of the planar graphs was given by Kuratowski in
1930. Kuratowski’s Theorem says that a graph is planar if and only if it contains
no subdivision of K5 or K3,3. Let G be a graph with n vertices and q edges.
We recall that a chord is any edge of G joining two nonadjacent vertices in a
cycle of G. We say that C is a primitive cycle if it has no chord. Also, a graph
G has a primitive cycle property (PCP ) if any two primitive cycles intersect
in at most one edge. The number frank(G) is called the free rank of G and it
is the number of primitive cycles of G. Also, the number rank(G) = q − n+ r

is called the cycle rank of G, where r is the number of connected components
of G. By [16, Proposition 2.2], we have rank(G) ≤ frank(G). A graph G is
called a ring graph if it satisfies in one of the following equivalent conditions
(see [16]).
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(i) rank(G) = frank(G);
(ii) G satisfies the PCP and G does not contain a subdivision of K4 as a

subgraph.

Also, an undirected graph is outerplanar if and only if it does not contain a
subdivision of K4 or K2,3. Clearly, every outerplanar graph is a ring graph and
every ring graph is a planar graph.

We begin this section with the following theorem.

Theorem 4.1. AG(RG) is planar if and only if RG is isomorphic to one the

following group rings.

(i) Z2C2;
(ii) Z2C3;
(iii) Z3C2;
(iv) F4C2.

Proof. First, suppose that AG(RG) is planar. Then we have the following
cases.

Case 1. |Z(R)| ≥ 3. Then there exist distinct nonzero zero-divisors r and s

such that rs = 0, since Γ(RG) is a connected spanning subgraph of AG(RG).
If 1 6= g ∈ G, then AG(RG) contains a copy of K3,3 with vertex set

{r, rg, rĜ} ∪ {s, sg, sĜ}.

Case 2. |Z(R)| = 2. Since |R| ≤ |Z(R)|2 and R is not a field, |R| = 4. Let
Z(R) = {0, a}. Then a2 = 0. Now, suppose that |G| ≥ 5. Then there exist
distinct nonidentity elements g1, g2, g3 and g4 in G. Hence AG(RG) has a copy
of K5 with vertex set

{Ĝ, a(1− g1), a(1− g2), a(1− g3), a(1 − g4)}.

So we conclude that |G| < 5.
First, suppose that |G| = 2. Then Char(R) = 4 or Char(R) = 2, since

|R| = 4. If Char(R) = 4, then R ∼= Z4 and Z(R) = {0, 2}. Clearly, we have

2 ∈ ann((−1 + g)(1− g))\(ann(−1 + g) ∪ ann(1− g));

1− g ∈ ann((2g)(1− g))\(ann(2g) ∪ ann(1− g));

Ĝ ∈ ann((2g)(3Ĝ))\(ann(2g) ∪ ann(3Ĝ)), and

2 ∈ ann((Ĝ)(3Ĝ))\(ann(Ĝ) ∪ ann(3Ĝ)).

Hence AG(RG) contains a copy of K3,3 with vertex set

{2g,−1 + g, Ĝ} ∪ {1− g, 3Ĝ, 2Ĝ}.

If Char(R) = 2, then R ∼=
Z2[x]
(x2) = {0, 1, x, 1 + x} such that Z(R) = {0, x}.

Now, it is easy to see that

x ∈ ann(((1 + x) + g)(1 + g))\(ann((1 + x) + g) ∪ ann(1 + g));
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x ∈ ann((1 + g)(1 + (1 + x)g))\(ann(1 + g) ∪ ann(1 + (1 + x)g));

(1 + x) + g ∈ ann((xg)((1 + x) + (1 + x)g))\(ann(xg)∪

ann((1 + x) + (1 + x)g));

x ∈ ann(((1 + x) + g)((1 + x) + (1 + x)g))\(ann((1 + x) + g)∪

ann((1 + x) + (1 + x)g));

x ∈ ann((1 + (1 + x)g)((1 + x) + (1 + x)g))\(ann(1 + (1 + x)g)∪

ann((1 + x) + (1 + x)g)), and

(1 + x) + g ∈ ann((1 + g)(xg))\(ann(1 + g) ∪ ann(xg)).

Thus AG(RG) contains a copy of K3,3 with vertex set

{xg, (1 + x) + g, 1 + (1 + x)g} ∪ {x+ xg, 1 + g, (1 + x) + (1 + x)g}.

Now, suppose that |G| = 3. ThenG = {1, g, g2}. In this situation, if Char(R) =
4, then R ∼= Z4 such that Z(R) = {0, 2}. It is easy to see that (2+ 2g)(1 + g−
g2) = 0. Hence 1 + g − g2 ∈ Z(RG). Also, we have

2 ∈ ann((3 − 3g2)(1 + g − g2))\(ann(3 − 3g2) ∪ ann(1 + g − g2));

2 ∈ ann((3 − 3g)(1 + g − g2))\(ann(3− 3g) ∪ ann(1 + g − g2)), and

2 ∈ ann((1 − g2)(1 + g − g2))\(ann(1− g2) ∪ ann(1 + g − g2)).

So AG(RG) contains a copy of K3,3 with vertex set

{3− 3g, 3− 3g2, 1− g2} ∪ {Ĝ, 2Ĝ, 1 + g − g2}.

If Char(R) = 2, then R ∼=
Z2[x]
(x2) such that Z(R) = {0, x}. Hence AG(RG)

contains a copy of K3,3 with vertex set

{1− g, 1− g2, x− xg} ∪ {Ĝ, xĜ, (1 + x)Ĝ}.

Finally, in this case, suppose that |G| = 4. Then there exist nonidentity distinct
elements g1, g2 and g3 such that G = {1, g1, g2, g3}. Let r, s be nonzero and
nonidentity distinct elements in R. Thus AG(RG) contains a copy of K3,3 with
vertex set

{1− g1, 1− g2, 1− g3} ∪ {Ĝ, rĜ, sĜ}.

Case 3. |Z(R)| = 1. Since R is finite and Z(R) = {0}, we conclude that R
is a field. So we have the following subcases.

Subcase 1. Char(R) | |G| and |R| ≥ 6. Then Ĝ2 = 0 and there exist
distinct nonzero elements r1, r2, r3, r4 and r5 in R. Thus AG(RG) contains a
copy of K5 with vertex set

{r1Ĝ, r2Ĝ, r3Ĝ, r4Ĝ, r5Ĝ}.
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Subcase 2. Char(R) | |G| and |R| = 5. So Ĝ2 = 0 and R ∼= Z5. Let
1 6= g ∈ G. Then AG(RG) contains a copy of K5 with vertex set

{Ĝ, 2Ĝ, 3Ĝ, 4Ĝ, 1− g}.

Subcase 3. Char(R) | |G| and |R| = 4 such that R = {0, 1, r, s}. Then

Ĝ2 = 0. We know that R is a field. Hence Char(R) = 2. If |G| ≥ 4, then
there exists proper subgroup H of G such that |H | = 2. Hence there exists

g1 ∈ G\H . We have Char(R)| |H |. Hence Ĥ2 = 0. Also ĤĜ = 2Ĝ = 0 and

g1Ĥ 6= Ĥ . Thus AG(RG) contains a copy of K5 with vertex set

{Ĝ, Ĥ, rĜ, sĜ, g1Ĥ}.

If Char(R) = 2 and |G| < 4, then |G| = 2. In this subcase, R is a local ring,
G is a 2-group and 2 ∈ J(R). So, by [19], RG is a local ring. By [2, Definition
2.3], Z(RG) = 〈1 − g; g ∈ G〉. Since Char(R) | |G|, AG(RG) ∼= K3. Thus
RG ∼= F4C2.

Subcase 4. Char(R) | |G| and |R| = 3. Then Char(R) = 3, R ∼= Z3 and
|G| = 3k, for some positive integer k.

Suppose that |G| > 3. Then G has a proper subgroup H such that |H | = 3.

In this situation, Char(R) = 3. Hence Ĥ2 = 0. So ĤĜ = 0. Let 1 6= g ∈ G\H
and 1 6= h ∈ H . Then AG(RG) contains a copy of K5 with vertex set

{Ĝ, Ĥ, 1− h, Ĝ− gĤ, gĤ}.

Let |G| = 3. Then G = {1, g, g2}. Then we have

1− g ∈ ann((1− g2)(g − g2))\(ann(1− g2) ∪ ann(g − g2));

1− g ∈ ann((1− g)(1− g2))\(ann(1− g) ∪ ann(1 − g2)), and

1− g ∈ ann((1− g)(g − g2))\(ann(1 − g) ∪ ann(g − g2)).

Hence AG(RG) contains a copy of K5 with vertex set

{Ĝ, 2Ĝ, g − g2, 1− g, 1− g2}.

Subcase 5. Char(R) | |G| and |R| = 2. Then R ∼= Z2 and G ∼= C2. It is

easy to see that Z(RG) = {0, Ĝ}. So AG(RG) ∼= K1, which is planar.
Subcase 6. Char(R) ∤ |G|. Then, by Perlis-Walker Theorem [18, Theorem

3.5.4], RG is a direct product of copies of at least two fields. First, if RG is a
direct product of copies of two fields F1 and F2, then Z∗(F1×F2) = {(r, 0) | r ∈
F∗
1}∪{(0, r) | r ∈ F∗

2}. Hence AG(RG) is a complete bipartite graph with parts
{(r, 0) | r ∈ F∗

1} and {(0, r) | r ∈ F∗
2}. If |F

∗
1|, |F

∗
2| ≥ 3, then AG(RG) contains a

copy of K3,3. So, without loss of generality, we may assume that |F∗
1| ≤ 2 and

|F∗
2| ≤ 3. Hence F1 × F2 is isomorphic to Z2 × Z2, Z2 × Z3, Z2 × F4, Z3 × Z2,

Z3×Z3 and Z3×F4 such that F4 is a field with four elements. By the definition
of RG, |F1 × F2| can not be 6 and 12, so F1 × F2 is not isomorphic to Z2 ×Z3,
Z3 × Z2 and Z3 × F4. By Lemma 2.1, RG is not isomorphic to Z2 × Z2. If
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|RG| = 9, then, by Lemma 2.2, RG ∼= Z3 × Z3. In this situation, AG(RG)

is a cycle with length four such that Ĝ ∼ −1 + g ∼ 2Ĝ ∼ 1 − g ∼ Ĝ, where
1 6= g ∈ G. Hence RG ∼= Z3C2. Suppose that |RG| = 8. Then we show that
RG ∼= Z2 × F4. In this situation, R ∼= Z2 and G ∼= C3. Let G = {1, g, g2}.

Then Z(RG) = {0, 1 + g, 1 + g2, g + g2, Ĝ}. Z(RG) 5 RG, since |Z(RG)| = 5.
Thus RG is nonlocal. On the other hand, RG is finite. Hence RG is a direct
product of at least two local rings. We show that RG is not isomorphic to
three local rings. By the way of contradiction, assume that RG is isomorphic
to three local rings. Since |RG| = 8, RG ∼= Z2 × Z2 × Z2, which is impossible,
by Lemma 2.1. Thus RG ≇ Z2 × Z2 × Z2. Hence RG is a direct product of
copies of two local rings. So RG is isomorphic to one the following rings.

Z2 × Z4, Z2 ×
Z2[x]
(x2) , Z2 × F4, Z4 × Z2,

Z2[x]
(x2) × Z2 and F4 × Z2.

We consider the rings Z2 × Z4, Z2 ×
Z2[x]
(x2) and Z2 × F4. char(RG) = 2, since

R ∼= Z2. On the other hand, char(Z2 × Z4) = 4. Thus RG ≇ Z2 × Z4. Also,

we know that the nonzero element (0, x)2 = (0, 0) in Z2 ×
Z2[x]
(x2) and RG does

not have such as element. Hence RG ≇ Z2 ×
Z2[x]
(x2) . Now, we show that RG is

isomorphic to Z2 × F4 which is planar. If ϕ is a homomorphism from RG to
Z2 × F4 given by

ϕ(0) = (0, 0), ϕ(1) = (1, 1), ϕ(Ĝ) = (1, 0), ϕ(g + g2) = (0, 1),
ϕ(g) = (1, a), ϕ(g2) = (1, a2), ϕ(1 + g) = (0, a2), ϕ(1 + g2) = (0, a),

where F4 = {0, 1, a, a2 : a3 = 1}, then ϕ is a ring isomorphism. So R ∼= Z2

and G ∼= C3. In this situation, Z∗(RG) = {Ĝ, 1 + g, 1 + g2, g + g2} such
that AG(Z2C3) ∼= K1,3, which is planar. Now, suppose that RG is a direct
product of three fields, say F1, F2 and F3. Let |F1|, |F2| and |F3| ≥ 3 such that
{0, 1, ri} ⊆ Fi for 1 ≤ i ≤ 3. Then since

(1, 1, 0) ∈ ann((0, r2, 1)(1, 0, r3))\(ann(0, r2, 1) ∪ ann(1, 0, r3)),

AG(RG) has a copy of K3,3 with vertex set

{(0, r2, 1), (0, r2, 0), (0, 1, 0)} ∪ {(1, 0, r3), (1, 0, 0), (r1, 0, 0)}.

Without loss of generality, we may assume that |F1| = 2, |F2| ≤ 3 and |F3| ≤ 3.
Then RG can be isomorphic to Z2 ×Z2 ×Z2, Z2 ×Z3 ×Z2, Z2 ×Z2 ×Z3 and
Z2 × Z3 × Z3. We know that |RG| is neither 12 nor 18. Also, by Lemma 2.1,
RG is not isomorphic to Z2 × Z2 × Z2. Thus RG is not isomorphic to direct
product of copies of three fields. Finally, suppose that RG is isomorphic to
direct product of copies of at least four fields. Then the element (1, 1, 0, 1, . . . , 1)
belongs to

ann((1, 0, 1, 0, . . . , 0)(0, 0, 1, 1, 0, . . . , 0))\(ann(1, 0, 1, 0, . . . , 0) ∪
ann(0, 0, 1, 1, 0, . . . , 0)),
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(1, 1, 0, 1, . . . , 1) belongs to

ann((1, 0, 1, 0, . . . , 0)(0, 1, 1, 0, . . . , 0))\(ann(1, 0, 1, 0, . . . , 0) ∪
ann(0, 1, 1, 0, . . . , 0)),

(1, 0, 1, 1, . . . , 1) belongs to

ann((1, 1, 0, . . . , 0)(0, 1, 1, 0, . . . , 0))\(ann(1, 1, 0, . . . , 0) ∪ ann(0, 1, 1, 0, . . . , 0)),

(1, 0, 1, 1, . . . , 1) belongs to

ann((1, 1, 0, . . . , 0)(0, 1, 0, 1, 0, . . . , 0))\(ann(1, 1, 0, . . . , 0) ∪
ann(0, 1, 0, 1, 0, . . . , 0)),

(1, 1, 1, 0, . . . , 0) belongs to

ann((1, 0, 0, 1, 0, . . . , 0)(0, 0, 1, 1, 0, . . . , 0))\(ann(1, 0, 0, 1, . . . , 0)∪
ann(0, 0, 1, 1, 0, . . . , 0)),

and (1, 1, 1, 0, . . . , 0) belongs to

ann((1, 0, 0, 1, . . . , 0)(0, 1, 0, 1, 0, . . . , 0))\(ann(1, 0, 0, 1, . . . , 0) ∪
ann(0, 1, 0, 1, 0, . . . , 0)),

AG(RG) has a copy of K3,3 with vertex sets

{(0, 0, 1, 1, 0, . . . , 0), (0, 1, 0, 1, 0, .., 0), (0, 1, 1, 0, . . . , 0)},

and

{(1, 0, 0, 1, 0, . . . , 0), (1, 0, 1, 0, . . . , 0), (1, 1, 0, . . . , 0)}.

Thus RG is not isomorphic to at least four fields.
The converse statement is clear. �

Now, the following corollaries are obtained from Theorem 4.1.

Corollary 4.2. AG(RG) is a ring graph if and only if AG(RG) is planar.

Corollary 4.3. AG(RG) is outerplanar if and only if AG(RG) is planar.

5. Line graph of AG(RG)

We begin this section with the following lemma.

Lemma 5.1 ([15, Lemma 2.1]). If G is a graph, then diam(L(G)) = 1 if and

only if G is isomorphic to K3 or K1,n.

In the following lemma, which is from [21], the planarity of a line graph
L(G) is characterized by using the planarity of G and its vertex degrees.

Lemma 5.2. A nonempty graph G has a planar line graph L(G) if and only if

(i) G is planar;
(ii) △(G) ≤ 4, and
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(iii) if deg(v) = 4, then v is a cut-vertex in the graph G.

Proposition 5.3. The graph AG(RG) is isomorphic to K3 if and only if RG

is isomorphic to F4C2.

Proof. Suppose that |G| ≥ 3. Then there exist distinct elements g1 and g2 in

G such that {1, g1, g2} ⊆ G. Thus {Ĝ, 1− g1, 1− g2, g1 − g2} ⊆ Z∗(RG), which
is impossible. So G ∼= C2.

Now, consider the case that |R| ≥ 5. Then there exist distinct elements r1,

r2 and r3 such that {0, 1, r1, r2, r3} ⊆ R. Thus {Ĝ, r1Ĝ, r2Ĝ, r3Ĝ} ⊆ Z∗(RG).

Thus |R| ≤ 4. If |R| = 2, then Z(RG) = {0, Ĝ}. So |R| 6= 2. If |R| = 3,

then {Ĝ, 2Ĝ, 1 − g, 2(1 − g)} ⊆ Z∗(RG). Hence |R| = 4. If char(R) = 4, then

R ∼= Z4. So {Ĝ, 2Ĝ, 3Ĝ, 2} ⊆ Z∗(RG), which is impossible. Let |R| = 4 and
char(R) = 2 such that R be not a field. Then there exist distinct elements r1
and r2 in R. We know that R is not a field. Thus without loss of generality,
let r1 ∈ Z∗(R). Hence {r1, Ĝ, r2Ĝ, r1Ĝ} ⊆ Z∗(RG), which is impossible.

Finally, suppose that R is a field with four elements, say R = {0, 1, a, a2}. If

RG ∼= F4C2, then Z(RG) = {0, Ĝ, aĜ, a2Ĝ} such that Ĝ2 = 0, since char(R) |
|G|. Hence the proof is completed. �

Lemma 5.4. diam(L(AG(RG))) ≤ 3.

Proof. Suppose that uv and xy are nonadjacent vertices in L(AG(RG)). Then
u, v, x and y are distinct vertices in AG(RG). Since AG(RG) is connected
with diam(AG(RG)) ≤ 2, by [9, Theorem 2.2], there exists a path P from x to
u with length at most two, say P : x ∼ w ∼ u such that w 6∈ {x, y, u, v} and
w ∈ V (AG(RG)). So there is a path with length at most three from uv to xy

and the proof is completed. �

Theorem 5.5. gr(L(AG(RG))) = 3 or RG is isomorphic to one of the follow-

ing rings.

(i) Z2C2;
(ii) Z3C2.

Proof. By Theorem 3.2, we know that gr(AG(RG)) = 3 if and only if gr(Γ(RG))
= 3. So, by [2, Proposition 2.8], gr(AG(RG)) = 3 if and only if RG ≇ Z2C2

and RG ≇ FprCq such that p and q are distinct prime numbers, p is a genera-

tor for ( Z
qZ
)∗ and gcd(r, q − 1) = 1 such that FprCq is isomorphic to the direct

product of two fields. Suppose that RG ∼= Z2C2. Then AG(RG) ∼= K1. So
L(AG(RG)) is a null graph. So L(AG(RG)) does not contain any cycle. If
RG ∼= F1 × F2 such that |F1|, |F2| ≥ 4, then AG(RG) ∼= K|F1|,|F2| such that
AG(RG) contains a copy of K3,3. So gr(L(AG(RG))) = 3. Without loss of
generality, we may assume that |F1| ≤ 3 and |F2| ≤ 4. In this situation, by
Lemmas 2.1 and 2.2, RG ∼= Z3C2. Hence AG(Z3×Z3) is a cycle of length four.
Hence gr(L(AG(RG))) = 4. Thus the proof is completed. �
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Theorem 5.6. diam(L(AG(RG))) = 1 if and only if RG is isomorphic to

F4C2 or Z2C3.

Proof. First, suppose that diam(L(AG(RG))) = 1. Then, by Theorem 4.1,
if RG /∈ {Z2C2,Z2C3,Z3C2,F4C2}, then RG contains a copy of K3,3 or K5,
which is not a star graph. Now, suppose that RG ∈ {Z2C2,Z2C3,Z3C2,F4C2}.
Then AG(Z2C2) ∼= K1, AG(Z2C3) ∼= K1,3, AG(F4C2) ∼= K3 and AG(Z3C2) is
a cycle. Also, by Lemma 5.1 and Proposition 5.3, RG is isomorphic to F4C2

or Z2C3.
The converse statement is clear. �

Theorem 5.7. L(AG(RG)) is planar if and only if RG is isomorphic to one

of the following rings.

(i) Z2C2;
(ii) Z3C2;
(iii) Z2C3;
(iv) F4C2.

Proof. First, suppose that L(AG(RG)) is planar. Then, by Theorem 4.1, RG is
one of the rings Z2C2, Z3C2, Z2C3 or F4C2. We know that |V (AG(Z2C2))| = 1.
Hence L(AG(RG)) is a null graph, which is planar. Now, suppose that RG

is isomorphic to Z3C2. Then Z(Z3C2) = {0, Ĝ, 2Ĝ, 1 + 2g, 2 + g}. Hence
L(AG(RG)) is isomorphic to the cycle of length four, which is planar. If RG

is isomorphic to Z2C3, then Z(Z2C3) = {0, Ĝ, 1 − g, 1 − g2, g − g2}. In this
situation, L(AG(RG)) is isomorphic to K3, which is planar. Finally, suppose
that RG is isomorphic to F4C2. Then L(AG(RG)) ∼= K3, which is planar.

The converse statement is clear. �

The following corollaries are obtained from Theorem 5.7.

Corollary 5.8. L(AG(RG)) is outerplnar if and only if L(AG(RG)) is planar.

Corollary 5.9. L(AG(RG)) is ring graph if and only if L(AG(RG)) is planar.
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