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ASYMPTOTIC BEHAVIOR OF GENERALIZED SOLUTIONS
IN BANACH SPACES

GU DAE LEE AND JONG YEOUL PARK

1. Introduction

Let X be a real Banach space with norm | - | and let I denote the
identity operator. Then an operator AC XXX with domain D(A) and
range R(A) is said to be accretive if |z;— 2| < |21—25+7 (31— ¥2) | for
all y;€ Az;, i=1,2, and r>0. An accretive operator ACXXX is m—
accretive if R(I+rA)=X for all r>0.

We consider the initial value problem

GO+ Au(®) +G W) (1) 1), 0<t<oo

u(0) =z, (1.1
where A is an m-accretive operator in a real Banach space X, fe
L'(0, T;X), x€D(A), and G is given mapping

G : C([0, ) ; D(A)) —> L1(0, T5X), for 0-LT< oo 1.2)

By a recent result of Crandall and Nohel [3, Theorem 17, the problem
(1.1) has a unique generalized solution u&C ([0, ©);X), provided that
G satisfies a Lipschitz type condition.

In this case X is a Hilbert space, the asymptotic behavior of such a
solution was studied by Aizicovici [1], Morosanu [9], Pazy [10]. The
present paper is concerned with asymptotic behavior, as f—> oo, of
generalized solution of (1.1) in a Banach space.

First, we prove that if «(¢) is a generalized solution of (1.1), then
the closed convex set SOO colu(®) 1 t=5} N A-10 consists of at most one

point, where ¢g {u(?) :/t>s} is the closed convex hull of {u(¢) : ¢>3).
This result is applied to study the problem of weak convergence of
the net {u() : ¢>0}.
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2. Preliminaries

Let X be a real Banach space and let X* its dual. The value of
z*eX* at z€X will be denote by (z,z*). With each z€X, we
associated the set

J(z)={z*€X*: (z, 2*) =|z|2=|2*|2.
Using the Hahn-Banach theorem, it is immediately clear that J(z)+#¢
for any z&X. Then multi-valued operator J : X ——> X* is called the
duality mapping of X.

Let U= {z= X : |2| =1} stand for the unit sphere of X. Then a Banach
space X is said to be smooth provided

limlx_Hyl — | 2]

t—0 t

exists for each z,y in U. When this is the case, the norm of X is said
to be Gateaux differentiable. It is said to be Fréchet differentiable if for
each z in U, this limit is attained uniformly for y in U. The space X
is said to be uniformly Gateaux differentiable norm if for each y in U,
the limit is attained uniformly for a in U. It is also known that if X
has a Fréchet differentiable norm, then J is norm to norm continuous;
[2] or [5] for more details.

Let D be a subset of X. Then we denote by D the closure of D and
by coD the closed convex hull of D. When {z,} is a net in X, then
2, —> x(resp. x,—— z) will denote norm (resp. weak) convergence
of the net {z,} to a.

For z and y in X, let {y, a),=max{(y,j) : j€J(x)}. An operator
A XXX is accretive if and only if {y;—us 21—22),20 for all z;&
D(A) and y;€ Az;, i=1,2. Let ACXXX be m-accretive. Then we put

A= {z: xeD(A), Az>20}
For a function #: [0, o) —> X, we denote by
ww)={yeX:u(t,) — y for some {¢,] with ¢, —> co}.
Consider now the initial value problem (1.1), where G satisfies (1.2),
z in D(A), and feL([0, «);X).

Recall that if 4 is an interval, then u« € W'1(4;X) means that there
is a function v : 4 —> X which is strongly integrable on 4. (i.e., ve
LY(9;X) such that u(#) —u(s) ::flv(r)dr (¢,5c8) then o (£)=v(t)
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a.e. on d).

DEFINITION 2.1. A strong solution of (1.1) on [0, ) is a function
w€ WEN([0, )5 X) NC([0, ) DAY, satisfiying 4(0) — and u’ (&) +
Au(t) +G(u) () 2f(t),a.e. on (0, o0).

DEFINITION 2.2. A function ze C ([0, w) ;D(A)) is said to be a gen-
eralized solution of equation of (1,1) if there are sequence , < D(A),

Fr€ L, ([0, 0);X) and w,&C([0, «);X) such that u, 1s a strong
solution of

duy Auy+G(u,) f,,
dt
u, (0) =2y,

Ty =2, fy o> f on LN0, T5X) and w, —« in C([0, T7:;X),
for each < 7T« co,

The following result is direct consequence of [3, Theorem 1 and 2]
PROPOSION 2.1. Let G satisfy (1,2) and
y )

[G () =G () | i <]OT(S) le—v| " 0sods, 0<s<t<loo, (2. 1)
Jor some y& Ly, ([0, ©); R) and every u,ve C ([0, ) sD(A)).
For each Te (0, ), there is ap: [0, ) —> 10, ) such that

Var (G(u) = [0, ¢]) <ap(R) (I4- Var (v : [0,£])), 0<¢<T (2.2)
and

|G () (07) | <ar(R),

whenever ucC([0, T1;D(A)) is of bounded variation and |u|p®qrx
SR. Then, foreach x€ D(A) and f&BV,.([0, %);X), problem (1.1)

has a unique strong solution. If xS D(A) and f& L}, ([0, ©);X), then
(1.1) has a unique generalized solution.

It is assume throughout
566 0 -6w) (), v(0) —w(@) >de=,

O0<s<#lo0, v,w&C([0, o0);D(A)) (2.3
G(v) (t) e L0, e0;X), for each constant
function v (¢)z=ve D(A) 2. 4)
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(2.5)

126
fELN(0, »:X)
z=D(A). (2.6)

The following lemma is consequence of [8, Remark3. 2].

LemMmA 2.1. Let z,y&eD(A), f, gL ([0, );X), and let u,v be
the corresponding generalized solution of (1.1). If (1.2), (2.1), (2, 2),
and (2.3) are satisfied, then we have

4@ —v @ | <|u() —0@ |+ £ —g() dr @.7)

whenever ) <s<<t< oo,
LEMMA 2.2 [1, Lemma 3. 1]. Suppose that (1.2), (2.1), (2.2), (2. 3),
(2.4), and (2.6) hold. Let u be the generalized solution of (1.1) corr-

esponding to f&L1([0, ©);X). Then
Flu® =51P=F1a© =317 < [ (@ =6() (2) 2, u() ~p)de
(2.8)
|0(®) =51 <10 =31 +] 1 (D) ~6() () —zlde (2.9)

whenever 0<s<t<oo, and (y,z2)<A.
If A-10#¢, we can take y& A=Y in(2.9) to obtain
(2.10)

|4() =31 = 14 =31 <[ 1f @ =6 0) (D) Idz, 12520,
Consequently, «(¢) is bounded on [0, ) and the function #—>
lu(t) —y|— :)!f(z') —G(y) () |dr is nonincreasing on [0, ). Then,
since G(v) (#) €L'(0, ®0;X), for each constant function v(¢)==ve< D(4)
and feL'(0, «;X), we deduce that
ltigglu(t)—y|=p(z)
exist for each y& A-1(.
Finally, let {S(#) : £>0} be a nonexpansive semigroup generated by

—A and let #(z) be the generalized solution of (1.1). Then we obtain
(2.11)

that
1S@u() —u+) 1 <[ 1 £ =G () lde

whenever 0<s, t< o0,
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From (2.11), we have
liilﬂl s;)gg)lS(t)u(s) —u(t+s)|=0. (2.12)

3. Asymptotic behavior

Unless other specified, {S(¢) : t20} denote a nonexpansive semigroup
generated by — A

LEMMA 3.1 Let X be a uniformly convexr Banach space and A be an
m~accretive operator in XXX. Let (1.2), (2.1)~(2.6) be satisfied. Let
w:[0,0) ——> X be a generalized solution of (1.1) and A WQ#d.  Let
yE AT, 0Ca<B<L and r=limlu(t) —y|. Then, for any >0, there
is ty=0 such that

1S(#) (Qu(s) + (1~ y) — (AS@Ouls) + 1 —-)y) | le
Sfor all s=ty,t20 and 2€ R with a<1<8.
Proof. Let r>>0. Then we can choose ¢ >0 so small that

(r+d) (1—co (TJEW) ) == rg<r,

where ¢ is the modulus of convexity of norm and c=min{24(1—2) :
as<A<fi. Let >0 with ro--2¢;<7. Then we can choose £,>0 such
that {u(s) —yl=r—e; for all s=¢, and |S(#)u(s) —ult+s) |<e; for all
t>=0 and s>¢,. Suppose that

18 () Qu(s) + A=) y) — QSO uls) +(1—Dy) | ==
for some s=t), t=0 and A€ R with a<<i<§.

Put a=1—-D(S®z—y) and v==2(S()u(s) —S(£)z), where r—
Au(s) +(1—~A)y. Then |ul <A(Q-2A)|u(s)—y| and o] <Alu(s) —2| =
AQ—A) |y—u(s)|. We also have that lu—v]=[8)z— (AS @) uls) +
1=y |=e and A+ A—Dv=21—-2) (S@uls)—»). So by using
the lemma in [6],

[AA=2) (S®uls) =) | =1Au(s) + 1= Do (s) |

SAA=AN() = A=22= D5 (=)

<A1 =) (r+d) (1——65(7{3:—‘7))
:/1(1_2)7'0
and hence |S(#)u(s)—y|<re This implies



128 Gu Dae Lee and Jong Yeoul Park

lu(t+s) —y|<IS@uls) —y| +er<rpt+e<r—e,.
On the other hand, since |u#(¢t+s) —y} =r—e¢;, this is contradiction. In
the case when =0, for any ¢ 5>0, y=A~10 and i€ R with 0<<A<]1,

[8(8) (Gu(s) + (1= y— ASuls) + (1= y) |
SAS() (Qu(s) +(A—Dy) —S@uls) |
+ (1= 18 (Au(s) + Q- y—y|

LA () +A—=Dy—u() |+ A=) [ Aul(s) + (1= y—y]

<S2A(A—A) ly—uls) |
So, we obtain the desired result.

Let x and y be element of a Banach space X. Then we denote by
[z, ¥] the set {Az+(1—A)»: 0<A<]).

LEMMA 3.2. Let C be a closed convex subset of a Banach space X with
a Iréchet differentiable norm and {u,} a bounded net in C. Let z&
Neofu, : t=s}, y=C and {y} a net of element in C with y,€ [y, u,]
s=0

and |y,—z|=min{lu—z| 1 uc[y,4,}. If y,—>y, then y==z.

Proof. Since J is single-valued, it follows from Theorem 2.5. in
(3] that (u—y;, J(»,—=2)) =0 for all u€ [y, 4,]. Putting u=u,, we have
(ut"yta J(.’)’z_z)) =0. 3. 1)
Since y, —> y and {«,} is bounded, there exist K >0 and #, such that
lus,—y] <K and |y,—z| <K for all t=¢. Let ¢=0 and choose >0 so
small that 26K<Ce. Since the norm of X is Frécher differentiable, we
can choose #;22¢, such that |y,—y|<d and |J(y,—z2) —J(y—2)|<5 for
all t=¢,. Since for t=4
| (te— 31, J (3e—2)) — (g~ 3, I (y—2)) |
= | (y— 2y, J (30— 2)) — (ur—y, J(yi—2)
+ (=, J((3,—2)) — (”t‘“y, J(J’_:» I
<ye—zlly—yl -+ lw—y 1T (p—2) —~J(v—2) |
<20K<e
by using (3.1), we have
(y—y, J(y—2)) Z (ty— 3, J (0, —2)) —¢
=20 -¢
== g,

Since 2& Ncolw, : t=s}, we have (z—y, J(y—z2)) =—e. This implies

530

—|lz—y|?2>0 and hence z=y.
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LEMMA 3.3. Let X be a uni formly convex Banach space with a Fréchet
differentiable norm, let u(t) be the unique generalized solution of (1.1),
and A-W0#¢. Let z= ﬂoc_o {w(® 1 t=s) NA10 and ye A-10. Then, for
any positive number ¢, there is t,=0 such that

(@) —y, J(y—2)) <e|y—=z| for every t=t,.

Proof. Let 2z& ﬂoc_o {u(®) 1 t2s) NA0, yeA4-10 and e>0. If y=z,
lemma 3.3 is obvious. So, let y#z. For any t>0, define a unique
element y, such that %€y, u®] and |y,—2|=min{lu—z| : uc Ly,
u(t)]}. Then, since y#z, by lemma 3. 2., we have y, ——> y. So, we
obtain ¢>0 and {¢,} with ¢, —> oo and | ¥:,—¥| =c. Setting

Ve =ar,u(t,) + (1—a,)y, 0<a,x<1,
we also obtain ¢y>>0 so small that a;,2¢y for every »n. In fact since
tﬂ
oSyl =a,lu) =yl <a, (la=yl+ [ "17() lde)
<a,(lz—yl+| 1/ 1do),

we may put co=c/(|x—y[+J:|f(r) ldz). Since the limit of |u(z) —y|
exists, putting k=lim|u(f) —y|. We have £>0. If not, we have u(¢)

—+> y and hence y,—> y, which contradicts 7>y Let r be a
positive number such that e>r and 2>92-. And choose a>0 so small
that

(R+a) (1—5( R”:fq))<R,

where § is the modulus of convexity of the norm and R= [z—y|. Then,
by lemma 3. 1., there exists 5,0 such that
18 (s) Ceon (£) -+ (L—c0) ) — (oS (8) () + (1—¢0) ) | << (3.2)
for all s>0 and ¢>s5,. We also choose 5,0 such that lu(t) —y| =2r
for every t=s, and lu(t+s) —S () u(s) | <r for every ¢t20 and s>s,.
Fix ¢z, with #,>max(s;, s,). Then since a;,>c,, we have
cou(tn) + (1 —co) yE [y, @, u(t,) + (1~ a,,) y1=[9, 9,].
Hence
leou (22) + (1 —co) y—2| <max {|z—~y|, [2—y,|} = |2—y| =R.
By using (3.2), we obtain
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leoS () u(t,) + (L —co) y—21 < 1S (s) (eou(t,) + (1 —co)y) —2| +a
<legu(ty) +A—cp)y—=z| +a
< R+a for every s=0.
On the other hand, since |y—z|=R<R-+a and
leoS () u(tn) + (L—c) y—yl=eo| S(s)u(z,) — |
Zeo(lu(s+e,) —y|—1)
2007’

for all s>0, we have, by uniform convexity,

L (@S Oue) +A=e)y=)+ =) I<(R+a) (1-0(2L))
<R

and hence

|£2°_S(s)u(t,,)+(1~%)y—zl <R for all s=0.

This implies that if u,== EZQS (ult,) + (1 -%) y, then

lu,+aly—u) —=z]>1y—2| for all a=1.
By Theorem 2.5., in [4], we have (u,+a(y—u)-—y, J(y—=2)) =0 and
hence (u,—y, J(y—2)) <0. Then (S(s)u(t,) —y, J(y—2)) <0. Therefore
(u(stty) —3, J(y—2)) L luls F4,) =S (ulty) | |y—z]
+ (8GO ult,) —y, J(y—2))
<le|ly—=z| for all s=0.
This completes the proof.

THEOREM 3. 1. Let X be a uniformly convex Banach space with a Fréchet
differentiable norm, let u(t) be the unique generalized solution of (1.1),
and A70+#¢. Then the set ﬂucﬁo @) 1 t=s} N A0 consists of at most
one point. i

Proof. Let y, 2 []ﬂ:o {u(®) :t=s} NA-10. Then, since Q’%GA*IO,
it follows from lemma 3.3, that for any ¢>>0, there is #,=0 such that

<u(t+t0)— y—gz, ]<yi-z -~z>)<sl~3’g—z~—zl for every #>0. Since

yEolult-Fey) 1 =0}, we have(y—- y:‘{):z, J(y;-z v—z>)<5|_3’_'5_€_z|

and hence (y—=z,J(y—=2))<2]|y-—-z|. Then we have |y—=z|<2e.
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Since ¢ is arbitrary, we have y—=-z,

THEOREM 3.2. Let X be a uni formly convex Banach space with a
Fréchet diff erentiable norm, let u(t) be the unique generalized solution of
(1.1), and A~W0+#¢. If o (u) T A0, then the set w(t) 1 =20} converges
weakly to some z< A~1).

Proof. Since A-10#¢, {u(¢) : >0} 1is bounded. So, any sequence
{u(z,)} with ¢,~—> co must contain a subsequence {u(z,)} which
converges weakly to some z&D(A). Since w(x) C A-10 and 2= N co{u(t)

520

1t2s), we obtain z& ﬂnc_o (@ 1 t=s} NA10. Therefore, it follows

from Theorem 3.1., that {u(z) : £>0} converges weakly to ze A-1),

THEOREM 3.3. Let X be a uniformly convex Banach space with a
Fréchet differentiable norm, let u(t) be the unique generalized solutions

of (1.1), and A-W0+#¢. If li‘m lu(t--k) —u(t) | =0 for all h=0, then
the net {u(¢) : t=0) converges weakly to some ye A-10.

Proof. By Theorem 3.2., it suffices to show that o) A1), Let
{u(t,)} be a sequence converges weakly to some yED(A), as t, —>
co. Let e0. Then |u(t+¢,) =S ut,)|<e/2 and lu(t+2,) —ult,))

<e/2 for all large enough n and #>0. Since

IS@u,) —u@,) | <ISOult,) —ult-,)|
-+ lu(t‘}"tn) '“Z{(t,,) ,,
we obtain |S(t)u(t,) —u(z,) |<le for all large enough n and ¢>0. Since
(I—S8(#)) is demiclosed [5], we have S(¢)y=y. Thus y& AT,
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