ASYMPTOTIC BEHAVIOR OF GENERALIZED SOLUTIONS IN BANACH SPACES

GU DAE LEE AND JONG YEOUL PARK

1. Introduction

Let X be a real Banach space with norm $|\cdot|$ and let I denote the identity operator. Then an operator $A \subset X \times X$ with domain D(A) and range R(A) is said to be accretive if $|x_1-x_2| \leq |x_1-x_2+r(y_1-y_2)|$ for all $y_i \in Ax_i$, i=1, 2, and r>0. An accretive operator $A \subset X \times X$ is m-accretive if R(I+rA) = X for all r>0.

We consider the initial value problem

$$\frac{du}{dt}(t) + Au(t) + G(u)(t) \ni f(t), \quad 0 < t < \infty$$

$$u(0) = x, \quad (1.1)$$

where A is an m-accretive operator in a real Banach space X, $f \in L^1(0, T; X)$, $x \in \overline{D(A)}$, and G is given mapping

$$G: C([0, \infty); \overline{D(A)}) \longrightarrow L^1(0, T; X), \text{ for } 0 < T < \infty.$$
 (1.2)

By a recent result of Crandall and Nohel [3, Theorem 1], the problem (1.1) has a unique generalized solution $u \in C([0, \infty); X)$, provided that G satisfies a Lipschitz type condition.

In this case X is a Hilbert space, the asymptotic behavior of such a solution was studied by Aizicovici [1], Morosanu [9], Pazy [10]. The present paper is concerned with asymptotic behavior, as $t \longrightarrow \infty$, of generalized solution of (1.1) in a Banach space.

First, we prove that if u(t) is a generalized solution of (1.1), then the closed convex set $\bigcap_{s\geqslant 0} \overline{co}\{u(t):t\geqslant s\}\cap A^{-1}0$ consists of at most one point, where $\overline{co}\{u(t):t\geqslant s\}$ is the closed convex hull of $\{u(t):t\geqslant s\}$.

This result is applied to study the problem of weak convergence of the net $\{u(t): t \ge 0\}$.

Received February 6, 1986. Revised June 1, 1986.

2. Preliminaries

Let X be a real Banach space and let X^* its dual. The value of $x^* \in X^*$ at $x \in X$ will be denote by (x, x^*) . With each $x \in X$, we associated the set

$$J(x) = \{x^* \in X^* : (x, x^*) = |x|^2 = |x^*|^2\}.$$

Using the Hahn-Banach theorem, it is immediately clear that $J(x) \neq \phi$ for any $x \in X$. Then multi-valued operator $J: X \longrightarrow X^*$ is called the duality mapping of X.

Let $U = \{x \in X : |x| = 1\}$ stand for the unit sphere of X. Then a Banach space X is said to be smooth provided

$$\lim_{t\to 0}\frac{|x+ty|-|x|}{t}$$

exists for each x, y in U. When this is the case, the norm of X is said to be Gâteaux differentiable. It is said to be Fréchet differentiable if for each x in U, this limit is attained uniformly for y in U. The space X is said to be uniformly Gâteaux differentiable norm if for each y in U, the limit is attained uniformly for x in U. It is also known that if X has a Fréchet differentiable norm, then J is norm to norm continuous; [2] or [5] for more details.

Let D be a subset of X. Then we denote by \overline{D} the closure of D and by $\overline{co}D$ the closed convex hull of D. When $\{x_{\alpha}\}$ is a net in X, then $x_{\alpha} \longrightarrow x$ (resp. $x_{\alpha} \longrightarrow x$) will denote norm (resp. weak) convergence of the net $\{x_{\alpha}\}$ to x.

For x and y in X, let $\langle y, x \rangle_s = \max\{(y, j) : j \in J(x)\}$. An operator $A \subset X \times X$ is accretive if and only if $\langle y_1 - y_2, x_1 - x_2 \rangle_s \ge 0$ for all $x_i \in D(A)$ and $y_i \in Ax_i$, i=1, 2. Let $A \subset X \times X$ be m-accretive. Then we put

$$A^{-1}0 = \{x : x \in D(A), Ax \ni 0\}$$

For a function $u:[0,\infty)\longrightarrow X$, we denote by

$$\omega(u) = \{ y \in X : u(t_n) \longrightarrow y \text{ for some } \{t_n\} \text{ with } t_n \longrightarrow \infty \}.$$

Consider now the initial value problem (1.1), where G satisfies (1.2), x in $\overline{D(A)}$, and $f \in L^1([0, \infty); X)$.

Recall that if \mathcal{G} is an interval, then $u \in W^{1,1}(\mathcal{G};X)$ means that there is a function $v: \mathcal{G} \longrightarrow X$ which is strongly integrable on \mathcal{G} . (i. e., $v \in L^1(\mathcal{G};X)$ such that $u(t) - u(s) = \int_s^t v(\tau) d\tau$ $(t, s \in \mathcal{G})$ then u'(t) = v(t)

a.e. on \mathcal{I}).

DEFINITION 2.1. A strong solution of (1.1) on $[0, \infty)$ is a function $u \in W^{1,1}_{loc}([0,\infty);X) \cap C([0,\infty);\overline{D(A)})$, satisfying u(0) = x and $u'(t) + Au(t) + G(u)(t) \ni f(t)$, a. e. on $(0,\infty)$.

DEFINITION 2.2. A function $u \in C([0, \infty); \overline{D(A)})$ is said to be a generalized solution of equation of (1, 1) if there are sequence $x_n \in \overline{D(A)}$, $f_n \in L^1_{loc}([0, \infty); X)$ and $u_n \in C([0, \infty); X)$ such that u_n is a strong solution of

$$\frac{du_n}{dt} + Au_n + G(u_n) \ni f_n,$$

$$u_n(0) = x_n,$$

 $x_n \longrightarrow x$, $f_n \longrightarrow f$ on $L^1(0, T; X)$ and $u_n \longrightarrow u$ in C([0, T]; X), for each $0 < T < \infty$.

The following result is direct consequence of [3, Theorem 1 and 2]

PROPOSION 2.1. Let G satisfy (1, 2) and

$$|G(u) - G(v)|_{L^{1}(0,t;X)} \le \int_{0}^{t} \gamma(s) |u - v|_{L^{\infty}(0,s;X)} ds, \quad 0 \le s \le t < \infty, \quad (2.1)$$

for some $\gamma \in L^1_{loc}([0, \infty); \mathbf{R})$ and every $u, v \in C([0, \infty); \overline{D(A)})$.

For each $T \in (0, \infty)$, there is $\alpha_T : [0, \infty) \longrightarrow [0, \infty)$ such that

$$Var(G(u):[0,t]) \leq \alpha_T(R) (I + Var(u:[0,t])), \quad 0 \leq t \leq T$$
 (2.2)

$$|G(u)(0^+)| \leq \alpha_T(R)$$
,

whenever $u \in C([0, T]; \overline{D(A)})$ is of bounded variation and $|u|_{L^{\infty}(0,T;X)} \le R$. Then, for each $x \in \overline{D(A)}$ and $f \in BV_{loc}([0, \infty); X)$, problem (1.1) has a unique strong solution. If $x \in \overline{D(A)}$ and $f \in L^1_{loc}([0, \infty); X)$, then (1.1) has a unique generalized solution.

It is assume throughout

$$\int_{s}^{t} \langle G(v)(\tau) - G(w)(\tau), v(\tau) - w(\tau) \rangle_{s} d\tau \ge 0,$$

$$0 \le s \le t < \infty, \quad v, w \in C([0, \infty); \overline{D(A)})$$
(2.3)

 $G(v)(t) \in L^1(0, \infty; X)$, for each constant

function
$$v(t) \equiv v \in D(A)$$
 (2.4)

$$f \in L^1(0, \infty; X) \tag{2.5}$$

$$x \in \overline{D(A)}$$
. (2.6)

The following lemma is consequence of [8, Remark3. 2].

LEMMA 2.1. Let $x, y \in D(A)$, $f, g \in L^1([0, \infty); X)$, and let u, v be the corresponding generalized solution of (1.1). If (1.2), (2.1), (2,2), and (2.3) are satisfied, then we have

$$|u(t) - v(t)| \le |u(s) - v(s)| + \int_{s}^{t} |f(\tau) - g(\tau)| d\tau$$
 (2.7)

whenever $0 \le s \le t < \infty$.

LEMMA 2.2 [1, Lemma 3.1]. Suppose that (1.2), (2.1), (2.2), (2.3), (2.4), and (2.6) hold. Let u be the generalized solution of (1.1) corresponding to $f \in L^1([0,\infty);X)$. Then

$$\frac{1}{2}|u(t)-y|^2 - \frac{1}{2}|u(s)-y|^2 \le \int_s^t (f(\tau) - G(y)(\tau) - z, u(\tau) - y) d\tau$$
(2.8)

$$|u(t) - y| \le |u(s) - y| + \int_{s}^{t} |f(\tau) - G(y)(\tau) - z| d\tau$$
whenever $0 \le s \le t < \infty$, and $(y, z) \in A$, (2.9)

If $A^{-1}0 \neq \phi$, we can take $y \in A^{-1}0$ in (2.9) to obtain

$$|u(t)-y|-|u(s)-y| \leq \int_{s}^{t} |f(\tau)-G(y)(\tau)| d\tau, \ t \geq s \geq 0.$$
 (2.10)

Consequently, u(t) is bounded on $[0, \infty)$ and the function $t \longrightarrow |u(t)-y|-\int_0^t |f(\tau)-G(y)(\tau)|d\tau$ is nonincreasing on $[0, \infty)$. Then, since $G(v)(t) \in L^1(0, \infty; X)$, for each constant function $v(t) \equiv v \in D(A)$ and $f \in L^1(0, \infty; X)$, we deduce that

$$\lim_{t\to 0}|u(t)-y|=\rho(z)$$

exist for each $y \in A^{-1}0$.

Finally, let $\{S(t): t \ge 0\}$ be a nonexpansive semigroup generated by -A and let u(t) be the generalized solution of (1.1). Then we obtain that

$$|S(t)u(s)-u(t+s)| \leq \int_{s}^{s+t} |f(\tau)-G(y)(\tau)| d\tau$$
(2.11)

whenever $0 \le s, t < \infty$.

From (2.11), we have

$$\lim_{s \to 0} \sup_{t > 0} |S(t)u(s) - u(t+s)| = 0.$$
 (2.12)

3. Asymptotic behavior

Unless other specified, $\{S(t): t \ge 0\}$ denote a nonexpansive semigroup generated by -A.

LEMMA 3.1 Let X be a uniformly convex Banach space and A be an m-accretive operator in X×X. Let (1.2), (2.1)~(2.6) be satisfied. Let $u: [0, \infty) \longrightarrow X$ be a generalized solution of (1.1) and $A^{-1}0 \neq \phi$. Let $y \in A^{-1}0, 0 < \alpha \le \beta < 1$ and $r = \lim_{t \to \infty} |u(t) - y|$. Then, for any $\varepsilon > 0$, there is $t_0 \ge 0$ such that

$$|S(t)(\lambda u(s) + (1-\lambda)y) - (\lambda S(t)u(s) + (1-\lambda)y)| < \varepsilon$$

for all $s \ge t_0$, $t \ge 0$ and $\lambda \in \mathbf{R}$ with $\alpha \le \lambda \le \beta$.

Proof. Let r>0. Then we can choose d>0 so small that

$$(r+d)(1-c\delta(\frac{\varepsilon}{r+d}))=r_0< r$$

where δ is the modulus of convexity of norm and $c=\min\{2\lambda(1-\lambda): \alpha \leq \lambda \leq \beta\}$. Let $\varepsilon_1 > 0$ with $r_0 + 2\varepsilon_1 < r$. Then we can choose $t_0 \geq 0$ such that $|u(s) - y| \geq r - \varepsilon_1$ for all $s \geq t_0$ and $|S(t)u(s) - u(t+s)| < \varepsilon_1$ for all $t \geq 0$ and $s \geq t_0$. Suppose that

$$|S(t)(\lambda u(s) + (1-\lambda)y) - (\lambda S(t)u(s) + (1-\lambda)y)| \ge \varepsilon$$

for some $s \ge t_0$, $t \ge 0$ and $\lambda \in \mathbf{R}$ with $\alpha \le \lambda \le \beta$.

Put $u=(1-\lambda)(S(t)z-y)$ and $v=\lambda(S(t)u(s)-S(t)z)$, where $z=\lambda u(s)+(1-\lambda)y$. Then $|u| \le \lambda(1-\lambda)|u(s)-y|$ and $|v| \le \lambda|u(s)-z|=\lambda(1-\lambda)|y-u(s)|$. We also have that $|u-v|=|S(t)z-(\lambda S(t)u(s)+(1-\lambda)y)| \ge \varepsilon$ and $\lambda u+(1-\lambda)v=\lambda(1-\lambda)(S(t)u(s)-y)$. So by using the lemma in [6],

$$|\lambda(1-\lambda)(S(t)u(s)-y)| = |\lambda u(s) + (1-\lambda)v(s)|$$

$$\leq \lambda(1-\lambda)|u(s)-y| (1-2\lambda(1-\lambda)\delta(\frac{\varepsilon}{|u(s)-y|}))$$

$$\leq \lambda(1-\lambda)(r+d) (1-c\delta(\frac{\varepsilon}{r+d}))$$

$$= \lambda(1-\lambda)r_0$$

and hence $|S(t)u(s)-y| \le r_0$. This implies

$$|u(t+s)-y| < |S(t)u(s)-y| + \varepsilon_1 \le r_0 + \varepsilon_1 < r - \varepsilon_1$$

On the other hand, since $|u(t+s)-y| \ge r-\varepsilon_1$, this is contradiction. In the case when r=0, for any $t, s \ge 0$, $y \in A^{-1}0$ and $\lambda \in \mathbf{R}$ with $0 \le \lambda \le 1$,

$$|S(t) (\lambda u(s) + (1-\lambda)y - (\lambda S(t)u(s) + (1-\lambda)y)|$$

$$\leq \lambda |S(t) (\lambda u(s) + (1-\lambda)y) - S(t)u(s)|$$

$$+ (1-\lambda) |S(t) (\lambda u(s) + (1-\lambda)y - y|$$

$$\leq \lambda |\lambda u(s) + (1-\lambda)y - u(s)| + (1-\lambda)|\lambda u(s) + (1-\lambda)y - y|$$

$$\leq 2\lambda (1-\lambda) |y - u(s)|$$

So, we obtain the desired result.

Let x and y be element of a Banach space X. Then we denote by [x, y] the set $\{\lambda x + (1-\lambda)y : 0 \le \lambda \le 1\}$.

LEMMA 3.2. Let C be a closed convex subset of a Banach space X with a Fréchet differentiable norm and $\{u_t\}$ a bounded net in C. Let $z \in \bigcap_{s \geqslant 0} \overline{co} \{u_t : t \geqslant s\}$, $y \in C$ and $\{y_t\}$ a net of element in C with $y_t \in [y, u_t]$ and $|y_t - z| = \min\{|u - z| : u \in [y, u_t]\}$. If $y_t \longrightarrow y$, then y = z.

Proof. Since J is single-valued, it follows from Theorem 2.5. in [3] that $(u-y_t, J(y_t-z)) \ge 0$ for all $u \in [y, u_t]$. Putting $u=u_t$, we have $(u_t-y_t, J(y_t-z)) \ge 0$. (3.1)

Since $y_t \longrightarrow y$ and $\{u_t\}$ is bounded, there exist K>0 and t_0 such that $|u_{t_0}-y| \leq K$ and $|y_t-z| \leq K$ for all $t \geq t_0$. Let $\varepsilon \geq 0$ and choose $\delta > 0$ so small that $2\delta K < \varepsilon$. Since the norm of X is Fréchet differentiable, we can choose $t_1 \geq t_0$ such that $|y_t-y| \leq \delta$ and $|J(y_t-z)-J(y-z)| < \delta$ for all $t \geq t_1$. Since for $t \geq t_1$

$$|(u_{t}-y_{t}, J(y_{t}-z)) - (u_{t}-y, J(y-z))|$$

$$= |(u_{t}-y_{t}, J(y_{t}-z)) - (u_{t}-y, J(y_{t}-z))|$$

$$+ (u_{t}-y, J((y_{t}-z)) - (u_{t}-y, J(y-z))|$$

$$\leq |y_{t}-z| |y_{t}-y| + |u_{t}-y| |J(y_{t}-z) - J(y-z)|$$

$$\leq 2\delta K \leq \varepsilon$$

by using (3.1), we have

$$(u_t - y, J(y-z)) \geqslant (u_t - y_t, J(y_t-z)) - \varepsilon$$

 $\geqslant 0 - \varepsilon$
 $= -\varepsilon$.

Since $z \in \bigcap_{s>0} \overline{co} \{u_t : t \ge s\}$, we have $(z-y, J(y-z)) \ge -\varepsilon$. This implies $-|z-y|^2 \ge 0$ and hence z=y.

LEMMA 3.3. Let X be a uniformly convex Banach space with a Fréchet differentiable norm, let u(t) be the unique generalized solution of (1.1), and $A^{-1}0 \neq \phi$. Let $z \in \bigcap_{t \geqslant 0} \overline{co} \{u(t) : t \geqslant s\} \cap A^{-1}0$ and $y \in A^{-1}0$. Then, for any positive number ε , there is $t_0 \geqslant 0$ such that

$$(u(t)-y,J(y-z)) \leq \varepsilon |y-z|$$
 for every $t \geq t_0$.

Proof. Let $z \in \bigcap_{s>0} \overline{co} \{u(t) : t \ge s\} \cap A^{-1}0$, $y \in A^{-1}0$ and $\varepsilon > 0$. If y=z, lemma 3.3 is obvious. So, let $y \ne z$. For any $t \ge 0$, define a unique element y_t such that $y_t \in [y, u(t)]$ and $|y_t-z| = \min\{|u-z| : u \in [y, u(t)]\}$. Then, since $y \ne z$, by lemma 3.2., we have $y_t \longrightarrow y$. So, we obtain c > 0 and $\{t_n\}$ with $t_n \longrightarrow \infty$ and $|y_{t_n} - y| \ge c$. Setting

$$y_{t_n} = a_{t_n} u(t_n) + (1 - a_{t_n}) y, \quad 0 \le a_{t_n} \le 1,$$

we also obtain $c_0>0$ so small that $a_{t_n} > c_0$ for every n. In fact since

$$c \leq |y_{t_n} - y| = a_{t_n} |u(t_n) - y| \leq a_{t_n} (|x - y| + \int_0^{t_n} |f(\tau)| d\tau)$$

$$\leq a_{t_n} (|x - y| + \int_0^{\infty} |f(\tau)| d\tau),$$

we may put $c_0=c/(|x-y|+\int_0^\infty|f(\tau)|d\tau)$. Since the limit of |u(t)-y| exists, putting $k=\lim_{t\to\infty}|u(t)-y|$. We have k>0. If not, we have u(t) $\longrightarrow y$ and hence $y_t \longrightarrow y$, which contradicts $y_t \longrightarrow y$. Let r be a positive number such that $\varepsilon > r$ and k>2r. And choose a>0 so small that

$$(R+a)\left(1-\delta\left(\frac{c_0r}{R+a}\right)\right) < R,$$

where δ is the modulus of convexity of the norm and R=|z-y|. Then, by lemma 3.1., there exists $s_1 \ge 0$ such that

$$|S(s)(c_0u(t)+(1-c_0)y)-(c_0S(s)u(t)+(1-c_0)y)| < a$$
 (3.2) for all $s \ge 0$ and $t \ge s_1$. We also choose $s_2 \ge 0$ such that $|u(t)-y| \ge 2r$ for every $t \ge s_2$ and $|u(t+s)-S(t)u(s)| < r$ for every $t \ge 0$ and $s \ge s_2$. Fix t_n with $t_n \ge \max(s_1, s_2)$. Then since $a_{t_n} \ge c_0$, we have

$$c_0u(t_n) + (1-c_0)y \in [y, a_{t_n}u(t_n) + (1-a_{t_n})y] = [y, y_n].$$

Hence

$$|c_0u(t_n)+(1-c_0)y-z| \le \max\{|z-y|, |z-y_{t_n}|\} = |z-y| = R.$$
 By using (3.2), we obtain

$$|c_0S(s)u(t_n) + (1-c_0)y-z| \leq |S(s)(c_0u(t_n) + (1-c_0)y)-z| + a$$

$$\leq |c_0u(t_n) + (1-c_0)y-z| + a$$

$$\leq R+a \text{ for every } s \geq 0.$$

On the other hand, since |y-z| = R < R+a and

$$|c_0S(s)u(t_n) + (1-c_0)y - y| = c_0|S(s)u(t_n) - y| \ge c_0(|u(s+t_n) - y| - r) \ge c_0r$$

for all $s \ge 0$, we have, by uniform convexity,

$$\left| \frac{1}{2} \left((c_0 S(s) u(t_n) + (1 - c_0) y - z) + (y - z) \right) \right| < (R + a) \left(1 - \delta \left(\frac{c_0 r}{R + a} \right) \right) < R$$

and hence

$$\left|\frac{c_0}{2}S(s)u(t_n)+\left(1-\frac{c_0}{2}\right)y-z\right| < R \text{ for all } s \ge 0.$$

This implies that if $u_s = \frac{c_0}{2}S(s)u(t_n) + \left(1 - \frac{c_0}{2}\right)y$, then

$$|u_s+\alpha(y-u_s)-z|>|y-z|$$
 for all $\alpha \geqslant 1$.

By Theorem 2.5., in [4], we have $(u_s+\alpha(y-u_s)-y,J(y-z))\geqslant 0$ and hence $(u_s-y,J(y-z))\leqslant 0$. Then $(S(s)u(t_n)-y,J(y-z))\leqslant 0$. Therefore

$$(u(s+t_n)-y,J(y-z)) \leqslant |u(s+t_n)-S(s)u(t_n)||y-z| + (S(s)u(t_n)-y,J(y-z))$$

$$\leqslant \varepsilon |y-z| \text{ for all } s \geqslant 0.$$

This completes the proof.

THEOREM 3. 1. Let X be a uniformly convex Banach space with a Fréchet differentiable norm, let u(t) be the unique generalized solution of (1.1), and $A^{-1}0 \neq \phi$. Then the set $\bigcap_{s>0} \overline{co} \{u(t) : t \geq s\} \cap A^{-1}0$ consists of at most one point.

Proof. Let $y, z \in \bigcap_{s>0} \overline{co} \{u(t) : t \geqslant s\} \cap A^{-1}0$. Then, since $\frac{y+z}{2} \in A^{-1}0$, it follows from lemma 3.3, that for any $\varepsilon > 0$, there is $t_0 \geqslant 0$ such that $\left(u(t+t_0) - \frac{y+z}{2}, J\left(\frac{y+z}{2} - z\right)\right) \leqslant \varepsilon \left|\frac{y+z}{2} - z\right|$ for every $t \geqslant 0$. Since $y \in \overline{co} \{u(t+t_0) : t \geqslant 0\}$, we have $\left(y - \frac{y+z}{2}, J\left(\frac{y+z}{2} - z\right)\right) \leqslant \varepsilon \left|\frac{y+z}{2} - z\right|$ and hence $(y-z, J(y-z)) \leqslant 2\varepsilon |y-z|$. Then we have $|y-z| \leqslant 2\varepsilon$.

Since ε is arbitrary, we have y=z.

THEOREM 3.2. Let X be a uniformly convex Banach space with a Fréchet differentiable norm, let u(t) be the unique generalized solution of (1.1), and $A^{-1}0 \neq \phi$. If $\omega(u) \subset A^{-1}0$, then the set $\{u(t) : t \geq 0\}$ converges weakly to some $z \in A^{-1}0$.

Proof. Since $A^{-1}0 \neq \phi$, $\{u(t): t \geq 0\}$ is bounded. So, any sequence $\{u(t_n)\}$ with $t_n \longrightarrow \infty$ must contain a subsequence $\{u(t_n)\}$ which converges weakly to some $z \in \overline{D(A)}$. Since $\omega(u) \subset A^{-1}0$ and $z \in \bigcap_{s \geq 0} \overline{co} \{u(t): t \geq s\}$, we obtain $z \in \bigcap_{s \geq 0} \overline{co} \{u(t): t \geq s\} \cap A^{-1}0$. Therefore, it follows from Theorem 3.1., that $\{u(t): t \geq 0\}$ converges weakly to $z \in A^{-1}0$.

Theorem 3.3. Let X be a uniformly convex Banach space with a Fréchet differentiable norm, let u(t) be the unique generalized solutions of (1.1), and $A^{-1}0 \neq \phi$. If $\lim_{t\to\infty} |u(t+h)-u(t)| = 0$ for all $h \geqslant 0$, then the net $\{u(t): t \geqslant 0\}$ converges weakly to some $y \in A^{-1}0$.

Proof. By Theorem 3.2., it suffices to show that $\omega(u) \subset A^{-1}0$. Let $\{u(t_n)\}$ be a sequence converges weakly to some $y \in \overline{D(A)}$, as $t_n \longrightarrow \infty$. Let $\varepsilon > 0$. Then $|u(t+t_n) - S(t)u(t_n)| < \varepsilon/2$ and $|u(t+t_n) - u(t_n)| < \varepsilon/2$ for all large enough n and $t \ge 0$. Since

$$|S(t)u(t_n)-u(t_n)| \leq |S(t)u(t_n)-u(t-t_n)| + |u(t-t_n)-u(t_n)|,$$

we obtain $|S(t)u(t_n)-u(t_n)| < \varepsilon$ for all large enough n and $t \ge 0$. Since (I-S(t)) is demiclosed [5], we have S(t)y=y. Thus $y \in A^{-1}0$.

References

- 1. S. Aizicovici, On the asymptotic behavior of solutions of Volterra equations in Hilbert space, Nonlinear analysis, 7(1983), 271-278.
- 2. F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach space, Proc. Sympos. Pure Math. Vol. 18, No. 2, Amer. Math. Soc., Providence, R.I. 1976.
- 3. M.G. Crandall and J.A. Nohel, An abstract functional differential equation and a related nonlinear Volterra equation, Israel J. Math. 29(1978), 313-328.
- 4. F.R. Deutsch and P.H. Maserick, Application of the Hahn-Banach theorem in approximation theory, SIAM Rev., 9(1967), 516-530.

- 5. J. Diestel, Geometry of Banach space, selected topics, Lecture notes in Math. #485(1975), Springer Verlag, Berlin-Heidelberg.
- 6. C.W. Groetsch, A note on segmenting Mann iterates, J. Math. Anal. Appl., 40(1972), 369-372.
- 7. D.S. Hulbert and S. Reich, Asymptotic behavior of solutions to nonlinear Volterra integral equations, J. Math. Anal. Appl., 104(1984), 155-172.
- 8. N. Kato, K. Kobayasi, and I. Miyadera, On the asymptotic behavior of solutions of evolution equations associated with nonlinear Volterra equations, Nonlinear analysis, 9(1985), 419-430.
- 9. G. Moroşanu, Asymptotic behavior of solutions of differential equations associated to monotone operators, Nonlinear analysis, 3(1979), 873-883.
- 10. A. Pazy, On the asymptotic behavior of semigroups of nonlinear contractions in Hilbert space, J. Fun. Anal, 27(1978), 292-307.
- 11. ——, Strong convergence of semigroups of nonlinear contractions in Hilbert space, J. Anal. Math., 34(1978), 1-35.

Dongeui University Pusan 601, Korea and Pusan National University Pusan 607, Korea