Some Remarks on Faithful Multiplication Modules

Dong-Soo Lee and Hyun-Bok Lee

Abstract

Let R be a commutative ring with identity and let M be a nonzero multiplication R-module. In this note we prove that M is finitely generated if M is a faithful multiplication R-module.

1. Introduction.

In this note all rings are commutative rings with identity and all modules are unital. Let R be a ring and M a nonzero R-module. The annihilator of M is denoted $\operatorname{Ann}(M)$. For any submodule N of M the annihilator of the factor module M / N will be denoted by ($N: M$) so that $(N: M)=\{r \in R: r M \subseteq N\}$. A module M is called faithful if $\operatorname{Ann}(M)=0$. Following [1], A module M is called a multiplication module if for any submodule N of M, there exists an ideal I of R such that $N=I M$. It is well-known that M is a multiplication module if and only if $N=(N: M) M$ for evey submodule N of M. A proper submodule N of a module M over a ring R is said to be prime if $r m \in N$ for $r \in R$ and $m \in M$ implies that either $m \in N$ or $r \in(N: M)$. Following [7], the radical of N, denoted by $\operatorname{rad} N$, is defined to be the intersection of all prime submodules of M cotaining N. If I is an ideal of ring R, then the radical of I considered as a submodule of R-module R is denoted by \sqrt{I} and consists of all elements r of R such that $r^{n} \in I$ for some positive integer n. RadM is defined to be the intersection of all the maximal submodules of $M . J(R)$ is defined to be the intersection of all maximal ideals of R.

A prime submodule P of a module M is called a minimal prime of A if $A \subseteq P$ and if there is no prime submodule Q of M such that $A \subset Q \subset P$. Following [4, corollay 2] or [3, corollary], it was proved that if R is an integral domain and M is a faithful multiplication R module, then M is finitely generated. We shall show that if M is a faithful multiplication R-module, then M is finitely generated.

2. Faithful mulitplication modules.

Proposition 2.1. Let R be an integral domain. If M is a faithful multiplication R-module, then every non-zero submodule of M is faithful.

Proof. Suppose N is nonzero submodule of M. Then $N=I M$ for some ideal of R. Suppose $r N=0$ for $r \in R$. Then $r N=r I M=0$. Since M is a faithful module and R is an integral domain, $r I=0$ and $r=0$. Hence N is faithful.

Lemma 2.2. Let R be a commutative ring with identity, M a multiplication R-module with annihilator J and A and B ideals of R. Then $A M \subseteq B M$ if and only if $A \subseteq B+J$ or $M=((B+J): A) M$.

Proof. See [8, theorem 9].
Theorem 2.3. Let M be a multiplication module. If N is a prime submodule of M, then there exists a unique prime ideal P of R containing $\operatorname{Ann}(M)$ such that $N=P M$.

Proof. Since M is a multiplication module and N is a prime submodule of $M, N=(N: M) M=P M$ for some prime ideal P of R with $A n n(M) \subseteq P$. We show that $(N: M)=(P M: M)=P$ for the uniqueness. Clearly $P \subseteq(P M: M)$. If $r \in(P M: M)$, then $(r) M \subseteq P M$. By lemma $2.2(r) \subseteq P$ or $(P:(r)) M=M$. Suppose $(r) \nsubseteq P$, then $(P:(r)) M=M$. Clearly $P \subseteq(P:(r))$. If
$a \in(P:(r))$, then $a(r) \subseteq P$ and so $a r \in P$. Since $r \notin P$ and P is prime ideal of $R, a \in P$. Thus $(P:(r)) \subseteq P$. Hence $(P:(r))=P$ and $M=(P:(r)) M=P M$. It contradicts to $P M \neq M$. Thus $r \in P$ and $(P M: M)=P$.

Corollary 2.4. Let M be a faithful multiplication module and let P be a prime ideal of R. Then $P M$ is prime submodule if and only if $(P M: M)=P$.

Proof. Since M is faithful, $\operatorname{Ann}(M) \subseteq P$. If $P M$ is a prime submodule of M, then $P M=(P M: M) M$ and $(P M: M)$ is a prime ideal of R. By theorem 2.3, $P=(P M: M)$. Conversely, if $(P M: M)=P$, then $P M \neq M$. By [2, corollary 2.11$]$ it holds.

Corollary 2.5. Let M be a multiplication module and let P be a maximal ideal of R. Then $P M$ is a maximal submodule of M if and only if $(P M: M)=P$.

Proof. Since $P M \neq M, \operatorname{Ann}(M) \subseteq P$. It is obvious by theorem 2.3 and [2, theorem 2.5]. Let R be an integral domain and let M be a faithful multiplication module. Then M is finitely generated by [4, corollary 2] or [3,2 corollary]. We shall show that if M is a faithful multiplication module, then M is finitely generated.

Theorem 2.6. Let M be a faithful multiplication module, then M is finitely generated.

Proof. Suppose M is not finitely generated. By [2, theorem 3.1] there exists some maximal ideal P of R such that $M=P M$. Since M is a multiplication module, there exists a maximal submodule Q of M such that $Q=q M \neq M$ with a maximal ideal q of R by [2, theorem 2.5]. Since a maximal submodule is a prime submodule and $Q=q M=q P M=P q M . q=P q$ and $q=P q \subseteq P$ by
theorem 2.3. Since P and q are maximal ideals of $R, P=q$. Therefore $M=P M=q M=Q$. It contradicts to $M \neq Q$. Hence M is finitely generated.

Corollary 2.7. Let M be a faithful multiplication module. Then $M \neq A M$ for any proper ideal A of R.

Proof. See the proof of the theorem 2.6.
THEOREM 2.8. M is a faithful multiplication R-module if and only if for each submodule N of M, there exists a unique ideal I of R such that $N=I M$.

Proof. Suppose M is a faithful multiplication module. Then M is finitely generated by theorem 2.6. Since M is a multiplication module, for each submodule N of M, there exists an ideal I of R such that $N=I M$. It is sufficient to prove that $I=(N: M)$ for the uniqueness. Clearly $I \subseteq(N: M)$. If $r \in(N: M)$, then $r M \subseteq N=I M$. By lemma $2.2(r) \subseteq I$ or $(I: r) M=M$. Suppose $(r) \nsubseteq I$. Then $(I: r) M=M$. By corollary $2.7, I:(r)=R$. Hence $(r) \subseteq I$, a contradiction. Therefore $(r) \subseteq I$ and $I=(N: M)$. Conversely suppose the condition holds. Then M is a multiplication module. Suppose $r M=0$. Then $(r) M=0$. By uniqueness $(r)=0$. Thus $r=0$ and M is faithful.

Corollary 2.9. If M is faithful multiplication R-module. Then $R a d M=J(R) M$.

Corollary 2.10. Let M be a faithful multiplication R-module. and let A be an ideal of R and N a submodule of M. Then
(1) N is a multiplication R-module if and only if $(K: N)(N:$ $M)=(K: M)$ for each submodule K of N.
(2) $I=(I M: M)$ for each ideal I of R.
(3) N is finitely generated if and only if ($N: M$) is finitely generated.
(4) N is faithful if and only if ($N: M$) has zero annihilator.

3. Radicals of submodules in modules.

Theorem 3.1. Let M be a multiplication module and let N and L be submodules of M. Then radN $+\operatorname{radL}=M$ if and only if $N+L=M$

Proof. Clearly, if $N+L=M$, then $\operatorname{rad} N+\operatorname{rad} L=M$. Suppose $N+L \neq M$. There is a maximal submodule P of M containing $N+L$ by [2,theorem 2.5].

Therefore $\operatorname{rad} N \subseteq P$, and $\operatorname{rad} L \subseteq P$. It is that $\operatorname{rad} N+\operatorname{rad} L \subseteq$ $P \neq M$.

Corollary 3.2. Let M be a multiplication module and let N and L be submodules of M. Then
(1) $N+L=M$ if and only if $\operatorname{rad} N+L=M$.
(2) $\operatorname{radN}=M$ if and only if $N=M$.

Proposition 3.3. Let M be a multiplication R-module and let I be an ideal of R. If $I \subseteq J(R)$, then $I M$ is small in M.

Proof. Suppose $I M+N=M$. If $N \neq M$, then there exists a maximal submodule P of M containing N and $P=(P: M) M \neq M$ where $(P: M)$ is a maximal ideal of R, by [2,theorem 2.5$]$. Since $I \subseteq J(R), I M+N \subseteq P \neq M$.

Proposition 3.4. Let M be a multiplication module and let N be a submodule of $M . P$ is a minimal prime submodule of N if and only if there exisits a minimal prime ideal I of $(N: M)$ such that $P=I M \neq M$.

Proof. Suppose P is a minimal prime submodule of N. Then $(N: M) M \subseteq(P: M) M$ and $(N: M) \subseteq(P: M)$ with a prime ideal $(P: M)$ of R. We show that $(P: M)$ is a minimal prime ideal of $(N: M)$. If $(N: M) \subseteq I \subseteq(P: M)$ with a prime ideal I, then $N \subseteq I M \subseteq P$. Since P is a minimal prime of $N, I M=P$ or $N=I M$. By theorem 2.3, $I=(P: M)$ or $(N: M)=I$, Therefore $(P: M)$ is a minimal prime ideal of ($N: M$).

Conversely, if I is minimal prime ideal of ($N: M$) such that $I M \neq$ M, then $N \subseteq I M$. Let $I M=P$. Then P is a prime submodule of M containing N. If Q is a prime submodule of M containing N such that $N \subseteq Q \subseteq P$, then $(N: M) \subseteq(Q: M) \subseteq(P: M)$. Since $(P: M)=(I M: M)=I$ by theorem $2.3,(P: M)$ is a minimal prime ideal of $(N: M)$ Therefore $(Q: M)=(N: M)$ or $(Q: M)=(P: M)$. Hence $Q=N$ or $Q=P$. Thus P is a minimal prime submodule of N.

Corollary 3.5. Let A be an ideal of R containing $A n n(M)$ and M a multiplication module.

Then P is a minimal prime ideal of A if and only if $P M$ is a minimal prime submodule of $A M$.

Proof. By corollary 2.7, $M \neq P M$. By proposition $3.4, P M$ is a minimal prime submodule of $A M$. Conversely, by proposition 3.4, there is a minimal prime ideal Q of $(A M: M)$ such that $P M=$ $Q M \neq M$. By theorem 2.3 and proposition $3.4, P=Q$.

Corollary 3.6. Let M be a multiplication module. Then rad $A M=\sqrt{A} M$ for every ideal A containing $\operatorname{Ann}(M)$.

Proof. By corollary 3.5 and [2, corollary 1.7], it is obvious.
Corollary 3.7. Let M be a multiplication module and let N be a submodule of M. Then $\operatorname{rad} N=\sqrt{(N: M)} M$.

References

1. A. Barnard, Multiplication Modules,, J. Algebra 71 (1981), 174-178.
2. Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. in Algebra 16 (1988), 755-779.
3. V.Erdogdu, Multiplication modules which are distributive, J. Pure and Applied Algebra 54 (1988), 209-213.
4. E.S. Kim and C.W. Choi, On multiplication modules, Kyungpook Math.J. 32(1) (1992), 97-102.
5. G.M. Low and P.F. Smith, Multiplication modules and ideals, Comm. in Algebra 18(12) (1990), 4353-4375.
6. C.P.Lu, M-radicals of submodules in modules, Math. Japonica 34(2) (1989), 211-219.
7. R.L. McCasland and M.E.Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull. 29 (1986), 37-39.
8. P.F. Smith, Some remarks on multiplication modules, Arch. Math. 50 (1988), 223-235.

Department of Mathematics

Chungnam National University
Taejon 305-764, Korea

