• Title/Summary/Keyword: LDPC 복호기

Search Result 105, Processing Time 0.024 seconds

An analysis of optimal design conditions of LDPC decoder for IEEE 802.11n Wireless LAN Standard (IEEE 802.11n 무선랜 표준용 LDPC 복호기의 최적 설계조건 분석)

  • Jung, Sang-Hyeok;Na, Young-Heon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.939-947
    • /
    • 2010
  • The LDPC(Low-Density Parity-Check) code, which is one of the channel encoding methods in IEEE 802.11n wireless LAN standard, has superior error-correcting capabilities. Since the hardware complexity of LDPC decoder is high, it is very important to take into account the trade-offs between hardware complexity and decoding performance. In this paper, the effects of LLR(Log-Likelihood Ratio) approximation on the performance of MSA(Min-Sum Algorithm)-based LDPC decoder are analyzed, and some optimal design conditions are derived. The parity check matrix with block length of 1,944 bits and code rate of 1/2 in IEEE 802.11n WLAN standard is used. In the case of $BER=10^{-3}$, the $E_b/N_o$ difference between LLR bit-widths (6,4) and (7,5) is 0.62 dB, and $E_b/N_o$ difference for iteration cycles 6 and 7 is 0.3 dB. The simulation results show that optimal BER performance can be achieved by LLR bit-width of (7,5) and iteration cycle of 7.

A New Syndrome Check based Early Stopping Method for DVB-S2 LDPC Decoding Algorithm (DVB-S2 LDPC 복호 알고리즘의 새로운 신드롬 체크 기반의 Early Stopping 방식)

  • Jang, Gwan-Seok;Chang, Dae-Ig;Oh, Deock-Gil
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.78-83
    • /
    • 2011
  • In this paper, we propose a computationally efficient early stopping method to reduce the average number of iterations. The conventional early stopping methods have too much computational complexity to compute the stopping criterion. Thus, only the hard decision based early stopping method is suitable to realize the hardware of LDPC decoder. However, this method also can increase the computational complexity of LDPC decoder. The proposed method can effectively reduce the computational complexity of stopping criterion as we do not compute hard decision, and we combine the stopping criterion with horizontal shuffling scheduling decoding scheme. The simulation results show that a new early stopping method achieves acceptable bit error rate performance also reduces the average number of iterations.

New Stopping Criteria for Iterative Decoding of LDPC Codes in H-ARQ Systems (H-ARQ 시스템에서 LDPC 부호의 반복 복호 중단 기법)

  • Shin, Beom-Kyu;Kim, Sang-Hyo;No, Jong-Seon;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.683-690
    • /
    • 2008
  • By using inherent stopping criteria of LDPC codes, the average number of iterations can be substantially reduced at high signal to noise ratio (SNR). However, we encounter a problem when hybrid automatic repeat request (H-ARQ) systems are applied. Frequent failures of decoding at low SNR region imply that the decoder leaches the maximum number of iterations frequently and thus the decoding complexity increases. In this paper, we propose a combination of stopping criteria using the syndrome weight of tentative codeword. By numerical analysis, it is shown that the decoding complexity of given H-ARQ system is reduced by 70-80% with the proposed algorithms.

An analysis of BER performance of LDPC decoder for WiMAX (WiMAX용 LDPC 복호기의 비트오율 성능 분석)

  • Kim, Hae-Ju;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.771-774
    • /
    • 2010
  • In this paper, BER performance of LDPC(Low-Density Parity-Check) decoder for WiMAX is analyzed, and optimal design conditions of LDPC decoder are derived. The min-sum LDPC decoding algorithm which is based on an approximation of LLR sum-product algorithm is modeled and simulated by Matlab, and it is analyzed that the effects of LLR approximation bit-width and maximum iteration cycles on the bit error rate(BER) performance of LDCP decoder. The parity check matrix for IEEE 802.16e standard which has block length of 2304 and code rate of 1/2 is used, and AWGN channel with QPSK modulation is assumed. The simulation results show that optimal BER performance is achieved for 7 iteration cycles and LLR bit-width of (8,6).

  • PDF

SISO-RLL Decoding Algorithm of 17PP Modulation Code for High Density Optical Recording Channel (고밀도 광 기록 채널에서 17PP 변조 부호의 연판정 입력 연판정 출력 런-길이 제한 복호 알고리즘)

  • Lee, Bong-Il;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2C
    • /
    • pp.175-180
    • /
    • 2009
  • When we apply the LDPC code for high density optical storage channel, it is necessary to make an algorithm that the modulation code decoder must feed the LDPC decoder soft-valued information because LDPC decoder exploits soft values using the soft input. Therefore, we propose the soft-input soft-output run-length limited 17PP decoding algorithm and compare performance of LDPC codes. Consequently, we found that the proposed soft-input soft-output decoding algorithm using 17PP is 0.8dB better than the soft-input soft-output decoding algorithm using (1, 7) RLL.

Hybrid ARQ With Symbol Mapping Diversity and Turbo Demodulation based on LDPC Codes (심볼 맵핑 다이버시티와 터보 복조를 사용하는 LDPC 부호 기반의 Hybrid ARQ 기법)

  • Ahn, Seok-Ki;Yang, Kyeong-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9C
    • /
    • pp.841-847
    • /
    • 2009
  • In this paper we propose a high-performance Hybrid ARQ scheme employing Chase combining based on LDPC (Low-Density Parity-Check) codes. The proposed scheme uses symbol mapping diversity and turbo demodulation to improve decoding performance. We analyze the performance of the proposed scheme by EXIT (EXtrinsic Information Transfer) chart and compare its performance with several symbol mappings.

8.1 Gbps High-Throughput and Multi-Mode QC-LDPC Decoder based on Fully Parallel Structure (전 병렬구조 기반 8.1 Gbps 고속 및 다중 모드 QC-LDPC 복호기)

  • Jung, Yongmin;Jung, Yunho;Lee, Seongjoo;Kim, Jaeseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.78-89
    • /
    • 2013
  • This paper proposes a high-throughput and multi-mode quasi-cyclic (QC) low-density parity-check (LDPC) decoder based on a fully parallel structure. The proposed QC-LDPC decoder employs the fully parallel structure to provide very high throughput. The high interconnection complexity, which is the general problem in the fully parallel structure, is solved by using a broadcasting-based sum-product algorithm and proposing a low-complexity cyclic shift network. The high complexity problem, which is caused by using a large amount of check node processors and variable node processors, is solved by proposing a combined check and variable node processor (CCVP). The proposed QC-LDPC decoder can support the multi-mode decoding by proposing a routing-based interconnection network, the flexible CCVP and the flexible cyclic shift network. The proposed QC-LDPC decoder is operated at 100 MHz clock frequency. The proposed QC-LDPC decoder supports multi-mode decoding and provides 8.1 Gbps throughput for a (1944, 1620) QC-LDPC code.

A Memory-efficient Partially Parallel LDPC Decoder for CMMB Standard (메모리 사용을 최적화한 부분 병렬화 구조의 CMMB 표준 지원 LDPC 복호기 설계)

  • Park, Joo-Yul;Lee, So-Jin;Chung, Ki-Seok;Cho, Seong-Min;Ha, Jin-Seok;Song, Yong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.1
    • /
    • pp.22-30
    • /
    • 2011
  • In this paper, we propose a memory efficient multi-rate Low Density Parity Check (LDPC) decoder for China Mobile Multimedia Broadcasting (CMMB). We find the best trade-off between the performance and the circuit area by designing a partially parallel decoder which is capable of passing multiple messages in parallel. By designing an efficient address generation unit (AGU) with an index matrix, we could reduce both the amount of memory requirement and the complexity of computation. The proposed regular LDPC decoder was designed in Verilog HDL and was synthesized by Synopsys' Design Compiler using Chartered $0.18{\mu}m$ CMOS cell library. The synthesized design has the gate size of 455K (in NAND2). For the two code rates supported by CMMB, the rate-1/2 decoder has a throughput of 14.32 Mbps, and the rate-3/4 decoder has a throughput of 26.97 Mbps. Compared with a conventional LDPC for CMMB, our proposed design requires only 0.39% of the memory.

An Efficient FTN Decoding Method using Separation of LDPC Decoding Symbol in Next Generation Satellite Broadcasting System (차세대 위성 방송 시스템에서 LDPC 복호 신호 분리를 통한 효율적인 FTN 복호 방법)

  • Sung, Hahyun;Jung, Jiwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.63-70
    • /
    • 2016
  • To increase throughput efficiency and improve performance, FTN(Faster Than Nyquist) method and LDPC(Low Density Parity Code) codes are employed in DVB-S3 system. In this paper, we proposed efficient turbo equalization model to minimize inter symbol interference induced by FTN transmission. This paper introduces two conventional scheme employing SIC(Successive Interference Cancellation) and BCJR equalizer. Then, we proposed new scheme to resolve problems in this two conventional scheme. To make performance improved in turbo equalization model, the outputs of LDPC and BCJR equalizer are iteratively exchange probabilistic information. In fed LDPC outputs as extrinsic informa tion of BCJR equalizer. we split LDPC output to separate bit probabilities. We compare performance of proposed scheme to that of conventional methods through using simulation in AWGN(Additive White Gaussian Noise) channel. We confirmed that performance was improved compared to conventional methods as increasing throughput parameters of FTN.

A Design of LDPC Decoder for IEEE 802.11n Wireless LAN (IEEE 802.11n 무선 랜 표준용 LDPC 복호기 설계)

  • Jung, Sang-Hyeok;Shin, Kyung-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.31-40
    • /
    • 2010
  • This paper describes a LDPC decoder for IEEE 802.11n wireless LAN standard. The designed processor supports parity check matrix for block length of 1,944 and code rate of 1/2 in IEEE 802.11n standard. To reduce hardware complexity, the min-sum algorithm and layered decoding architecture are adopted. A novel memory reduction technique suitable for min-sum algorithm was devised, and our design reduces memory size to 25% of conventional method. The LDPC decoder processor synthesized with a $0.35-{\mu}m$ CMOS cell library has 200,400 gates and memory of 19,400 bits, and the estimated throughput is about 135 Mbps at 80 MHz@2.5v. The designed processor is verified by FPGA implementation and BER evaluation to validate the usefulness as a LDPC decoder.