• Title/Summary/Keyword: LDD

Search Result 113, Processing Time 0.023 seconds

The Current-Voltage Characteristics analysis of EPI MOSFET using TCAD (TCAD를 이용한 EPI MOSfET의 전류-전압 특성 분석)

  • 김재홍;장광균;심성택;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.490-493
    • /
    • 2000
  • The technology for characteristics analysis of device for high integration is changing rapidly. Therefore to understand characteristics of high integrated device by computer simulation and to fabricate the device having such characteristics became one of very important subjects. As devices become smaller to submicron, we have investigated MOSFET built on an epitaxial layer(EPI) of a heavily-doped ground plane by TCAD(Technology Computer Aided Design) to develop optimum device structure. We compared and analyzed the characteristics of such device structure, i.e., impact ionization, electric field and I-V characteristics curve with lightly-doped drain(LDD) MOSFET. Also, we presented that TCAD simulator is suitable for device simulation.

  • PDF

The Study on Channel and Doping influence of MOSFET using TCAD (TCAD를 이용한 채널과 도핑 농도에 따른 MOSFET의 특성 분석)

  • 심성택;장광균;정정수;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.470-473
    • /
    • 2000
  • The metal-oxide-semiconductor field-effect transistor(MOSFET) has undergone many changes in the last decade in response to the constant demand for increased speed, decreased power, and increased patting density. The devices are scaled down day by day. Therefore, This paper investigates how MOSFET structures influence on transport properties in according to change of channel length and bias and, observes impact ionization between the drain and the gate. This paper proposes three models, i.e., conventional MOSFET, LDD MOSFET and EPI MOSFET. The gate lengths are 0.3$\mu\textrm{m}$ 0.15$\mu\textrm{m}$, 0.075$\mu\textrm{m}$ and scaling factor is λ = 2. We have presented MOSFET's characteristics such as I-V characteristic, impart ionization, electric field, using the TCAD. We have analyzed the adaptive channel and doping influences

  • PDF

Investigation of Threshold Voltage in Si-Based MOSFET with Nano-Channel Length (Si-기반 나노채널 MOSFET의 문턱전압에 관한 분석)

  • 정정수;장광균;심성택;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.317-320
    • /
    • 2001
  • In this paper, we have presented the simulation results about threshold voltage at Si-based MOSFETs with channel length of nano scale. We simulated the Si-based n-channel MOSFETS with sate lengthes from 180 to 30 nm in accordance to constant voltage scaling theory. These MOSFETs had the lightly doped drain(LDD) structure, which is used for the reduction of electric field magnitude and short channel effects at the drain region. The stronger electric field at this region it due to scaling down. We investigated and analysed the threshold voltage of these devices. This analysis will provide insight into some applicable limitations at the ICs and used for basis data at VLSI.

  • PDF

Comparison on commercial simulators for nano-structure device simulation- For ISE-TCAD and Micro-tec - (나노 구조 소자 시뮬레이션을 위한 상용 시뮬레이터의 비교 분석 - ISE-TCAD와 Micro-tec을 중심으로 -)

  • 심성택;임규성;정학기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.103-108
    • /
    • 2002
  • The metal-oxide-semiconductor field-effect transistor(MOSFET) has undergone many changes in the last decade In response to the constant demand for increased speed, decreased power, and increased packing density. The state -of-the-art simulation programs are developed by engineers and scientists. This paper has compared commercial programs of Micro-tec and ISE-TCAD in device simulation. This paper investigates LDD MOSFET using two simulators. Bias condition is applied to the devices with gate lengths(Lg) 180㎚. We have presented MOSFET's characteristics such as I-V characteristic and electric field, and compared Micro-tec with ISE TCAD.

A five mask CMOS LTPS process with LDD and only one ion implantation step

  • Schalberger, Patrick;Persidis, Efstathios;Fruehauf, Norbert
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1645-1648
    • /
    • 2006
  • We have developed a CMOS LTPS process, which requires only five photolithographic masks and only one ion doping step. Single TFTs, inverters, ring oscillators and shift registers were fabricated. N- and p-channel devices reached field effect mobilities of $173cm^2/Vs$ and $47cm^2/Vs$, respectively.

  • PDF

Two Dimensional MOSFET Simulator using Mixed Particle Monte Carlo Method (Mixed Particle Monte Carlo 방법을 이용한 2차원 MOSFET 시뮬레이터)

  • 진교영;박영준;민홍식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.134-148
    • /
    • 1994
  • A full two-dimensional MOSFET simulator utilizing the Mixed Particle Monte Carlo method is introduced. Particle simulation for both electrons and holes are self-consistently coupled with Poisson 's equation. To demonstrate the performance of the simulator, steady state and transient state solutions of the terminal characteristics and the internal physical quantities are obtained for 0.25$\mu$m MOSFETs with three different structures` conventional single drain, LDD and GOLD MOSFET structures.

  • PDF

A Five Mask CMOS LTPS Process With LDD and Only One Ion Implantation Step

  • Schalberger, Patrick;Persidis, Efstathios;Fruehauf, Norbert
    • Journal of Information Display
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • We have developed a CMOS LTPS process which requires only five photolithographic masks and only one ion doping step. Drain/Source areas of NMOS TFTs were formed by PECVD deposition of a highly doped precursor layer while PMOS contact areas were defined by ion implantation. Single TFTs, inverters, ring oscillators and shift registers were fabricated. N and p-channel devices reached field effect mobilities of $173cm^2$/Vs and $47cm^2$/Vs, respectively.

Trade-off Characteristic between Gate Length Margin and Hot Carrier Lifetime by Considering ESD on NMOSFETs of Submicron Technology

  • Joung, Bong-Kyu;Kang, Jeong-Won;Hwang, Ho-Jung;Kim, Sang-Yong;Kwon, Oh-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Hot carrier degradation and roll off characteristics of threshold voltage ($V_{t1}$) on NMOSFETs as I/O transistor are studied as a function of Lightly Doped Drain (LDD) structures. Pocket dose and the combination of Phosphorus (P) and Arsenic (As) dose are applied to control $V_{t1}$ roll off down to the $10\%$ gate length margin. It was seen that the relationship between $V_{t1}$ roll off characteristic and substrate current depends on P dopant dose. For the first time, we found that the n-p-n transistor triggering voltage ($V_{t1}$) depends on drain current, and both $I_{t2}$ and snapback holding voltage ($V_{sp}$) depend on the substrate current by characterization with a transmission line pulse generator. Also it was found that the improved lifetime for hot carrier stress could be obtained by controlling the P dose as loosing the $V_{t1}$ roll off margin. This study suggests that the trade-off characteristic between gate length margin and channel hot carrier (CHC) lifetime in NMOSFETs should be determined by considering Electrostatic Discharge (ESD) characteristic.

Analysis on the Scaling of MOSFET using TCAD (TCAD를 이용한 MOSFET의 Scaling에 대한 특성 분석)

  • 장광균;심성택;정정수;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.442-446
    • /
    • 2000
  • The metal-oxide-semiconductor field-effect transistor(MOSFET) has undergone many changes in the last decade in response to the constant demand for increased speed, decreased power, and increased parking density. Therefore, it was interested in scaling theory, and full-band Monte Carlo device simulator has been used to study the effects of device scaling on hot carriers in different MOSFET structures. MOSFET structures investigated in this study include a conventional MOSFET with a single source/drain, implant a lightly-doped drain(LDD) MOSFET, and a MOSFET built on an epitaxial layer(EPI) of a heavily-doped ground plane, and those are analyzed using TCAD(Technology Computer Aided Design) for scaling and simulation. The scaling has used a constant-voltage scaling method, and we have presented MOSFET´s characteristics such as I-V characteristic, impact ionization, electric field and recognized usefulness of TCAD, providing a physical basis for understanding how they relate to scaling.

  • PDF

Analysis of a Novel Self-Aligned ESD MOSFET having Reduced Hot-Carrier Effects (Hot-Carrier 현상을 줄인 새로운 구조의 자기-정렬된 ESD MOSFET의 분석)

  • 김경환;장민우;최우영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.21-28
    • /
    • 1999
  • A new method of making high speed self-aligned ESD (Elevated Source/Drain) MOSFET is proposed. Different from the conventional LDD (Lightly-Doped Drain) structure, the proposed ESD structure needs only one ion implantation step for the source/drain junctions, and makes it possible to modify the depth of the recessed channel by use of dry etching process. This structure alleviates hot-carrier stress by use of removable nitride sidewall spacers. Furthermore, the inverted sidewall spacers are used as a self-aligning mask to solve the self-align problem. Simulation results show that the impact ionization rate ($I_{SUB}/I_{D}$) is reduced and DIBL (Drain Induced Barrier Lowering) characteristics are improved by proper design of the structure parameters such as channel depth and sidewall spacer width. In addition, the use of removable nitride sidewall spacers also enhances hot-carrier characteristics by reducing the peak lateral electric field in the channel.

  • PDF