• Title/Summary/Keyword: L-topological space

Search Result 28, Processing Time 0.024 seconds

On The Reflection And Coreflection

  • Park, Bae-Hun
    • The Mathematical Education
    • /
    • v.16 no.2
    • /
    • pp.22-26
    • /
    • 1978
  • It is shown that a map having an extension to an open map between the Alex-androff base compactifications of its domain and range has a unique such extension. J.S. Wasileski has introduced the Alexandroff base compactifications of Hausdorff spaces endowed with Alexandroff bases. We introduce a definition of morphism between such spaces to obtain a category which we denote by ABC. We prove that the Alexandroff base compactification on objects can be extended to a functor on ABC and that the compact objects give an epireflective subcategory of ABC. For each topological space X there exists a completely regular space $\alpha$X and a surjective continuous function $\alpha$$_{x}$ : Xlongrightarrow$\alpha$X such that for each completely regular space Z and g$\in$C (X, Z) there exists a unique g$\in$C($\alpha$X, 2) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\alpha$$_{x}$, $\alpha$X) is called a completely regularization of X. Let TOP be the category of topological spaces and continuous functions and let CREG be the category of completely regular spaces and continuous functions. The functor $\alpha$ : TOPlongrightarrowCREG is a completely regular reflection functor. For each topological space X there exists a compact Hausdorff space $\beta$X and a dense continuous function $\beta$x : Xlongrightarrow$\beta$X such that for each compact Hausdorff space K and g$\in$C (X, K) there exists a uniqueg$\in$C($\beta$X, K) with g=g$^{\circ}$$\beta$$_{x}$. Such a pair ($\beta$$_{x}$, $\beta$X) is called a Stone-Cech compactification of X. Let COMPT$_2$ be the category of compact Hausdorff spaces and continuous functions. The functor $\beta$ : TOPlongrightarrowCOMPT$_2$ is a compact reflection functor. For each topological space X there exists a realcompact space (equation omitted) and a dense continuous function (equation omitted) such that for each realcompact space Z and g$\in$C(X, 2) there exists a unique g$\in$C (equation omitted) with g=g$^{\circ}$(equation omitted). Such a pair (equation omitted) is called a Hewitt's realcompactification of X. Let RCOM be the category of realcompact spaces and continuous functions. The functor (equation omitted) : TOPlongrightarrowRCOM is a realcompact refection functor. In [2], D. Harris established the existence of a category of spaces and maps on which the Wallman compactification is an epirefiective functor. H. L. Bentley and S. A. Naimpally [1] generalized the result of Harris concerning the functorial properties of the Wallman compactification of a T$_1$-space. J. S. Wasileski [5] constructed a new compactification called Alexandroff base compactification. In order to fix our notations and for the sake of convenience. we begin with recalling reflection and Alexandroff base compactification.

  • PDF

ON SUPER CONTINUOUS FUNCTIONS

  • Baker, C.W.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.17-22
    • /
    • 1985
  • B.M. Munshi and D.S. Bassan defined and developed the concept of super continuity in [5]. The concept has been investigated further by I. L. Reilly and M. K. Vamanamurthy in [6] where super continuity is characterized in terms of the semi-regularization topology. Super continuity is related to the concepts of .delta.-continuity and strong .theta.-continuity developed by T. Noiri in [7]. The purpose of this note is to derive relationships between super continuity and other strong continuity conditions and to develop additional properties of super continuous functions. Super continuity implies continuity, but the converse implication is false [5]. Super continuity is strictly between strong .theta.-continuity and .delta.-continuity and strictly between complete continuity and .delta.-continuity. The symbols X and Y will denote topological spaces with no separation axioms assumed unless explicity stated. The closure and interior of a subset U of a space X will be denoted by Cl(U) and Int(U) respectively and U is said to be regular open (resp. regular closed) if U=Int[Cl(U) (resp. U=Cl(Int(U)]. If necessary, a subscript will be added to denote the space in which the closure or interior is taken.

  • PDF

ALMOST-INVERTIBLE SPACES

  • Long, Paul E.;Herrington, Larry L.;Jankovic, Dragan S.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.91-102
    • /
    • 1986
  • A topological space (X,.tau.) is called invertible [7] if for each proper open set U in (X,.tau.) there exists a homoemorphsim h:(X,.tau.).rarw.(X,.tau.) such that h(X-U).contnd.U. Doyle and Hocking [7] and Levine [13], as well as others have investigated properties of invertible spaces. Recently, Crosseley and Hildebrand [5] have introduced the concept of semi-invertibility, which is weaker than that of invertibility, by replacing "homemorphism" in the definition of invertibility with "semihomemorphism", A space (X,.tau.) is said to be semi-invertible if for each proper semi-open set U in (X,.tau.) there exists a semihomemorphism h:(X,.tau.).rarw.(X,.tau.) such that h(X-U).contnd.U. The purpose of the present article is to introduce the class of almost-invertible spaces containing the class of semi-invertible spaces and to investigate its properties. One of the primary concerns will be to determine when a given local property in an almost-invertible space is also a global property. We point out that many of the results obtained can be applied in the cases of semi-invertible spaces and invertible spaces. For example, it is shown that if an invertible space (X,.tau.) has a nonempty open subset U which is, as a subspace, H-closed (resp. lightly compact, pseudocompact, S-closed, Urysohn, Urysohn-closed, extremally disconnected), then so is (X,.tau.).hen so is (X,.tau.).

  • PDF

THE STRUCTURE OF ALMOST REGULAR SEMIGROUPS

  • Chae, Younki;Lim, Yongdo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.187-192
    • /
    • 1994
  • The author extended the small properties of topological semilattices to that of regular semigroups [3]. In this paper, it could be shown that a semigroup S is almost regular if and only if over bar RL = over bar R.cap.L for every right ideal R and every left ideal L of S. Moreover, it has shown that the Bohr compactification of an almost regular semigroup is regular. Throughout, a semigroup will mean a topological semigroup which is a Hausdorff space together with a continuous associative multiplication. For a semigroup S, we denote E(S) by the set of all idempotents of S. An element x of a semigroup S is called regular if and only if x .mem. xSx. A semigroup S is termed regular if every element of S is regular. If x .mem. S is regular, then there exists an element y .mem S such that x xyx and y = yxy (y is called an inverse of x) If y is an inverse of x, then xy and yx are both idempotents but are not always equal. A semigroup S is termed recurrent( or almost pointwise periodic) at x .mem. S if and only if for any open set U about x, there is an integer p > 1 such that x$^{p}$ .mem.U.S is said to be recurrent (or almost periodic) if and only if S is recurrent at every x .mem. S. It is known that if x .mem. S is recurrent and .GAMMA.(x)=over bar {x,x$^{2}$,..,} is compact, then .GAMMA.(x) is a subgroup of S and hence x is a regular element of S.

  • PDF

A COUNTEREXAMPLE FOR IMPROVED SOBOLEV INEQUALITIES OVER THE 2-ADIC GROUP

  • Chamorro, Diego
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.231-241
    • /
    • 2013
  • On the framework of the 2-adic group $\mathcal{Z}_2$, we study a Sobolev-like inequality where we estimate the $L^2$ norm by a geometric mean of the BV norm and the $\dot{B}_{\infty}^{-1,{\infty}}$ norm. We first show, using the special topological properties of the $p$-adic groups, that the set of functions of bounded variations BV can be identified to the Besov space ˙$\dot{B}_1^{1,{\infty}}$. This identification lead us to the construction of a counterexample to the improved Sobolev inequality.

Some Difference Paranormed Sequence Spaces over n-normed Spaces Defined by a Musielak-Orlicz Function

  • Raj, Kuldip;Sharma, Sunil K.;Gupta, Amit
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.1
    • /
    • pp.73-86
    • /
    • 2014
  • In the present paper we introduce difference paranormed sequence spaces $c_0(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$, $c(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$ and $l_{\infty}(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$ defined by a Musielak-Orlicz function $\mathcal{M}$ = $(M_k)$ over n-normed spaces. We also study some topological properties and some inclusion relations between these spaces.

ON THE DIRECT PRODUCTS AND SUMS OF PRESHEAVES

  • PARK, WON-SUN
    • Honam Mathematical Journal
    • /
    • v.1 no.1
    • /
    • pp.21-25
    • /
    • 1979
  • Abelian군(群)의 presheaf에 관한 직적(直積)과 직화(直和)를 Category 입장에서 정의(定義)하고 presheaf $F_{\lambda}\;({\lambda}{\epsilon}{\Lambda})$들의 두 직적(直積)(또는 直和)은 서로 동형적(同型的) 관계(關係)에 있으며, 특히 ${\phi}:X{\rightarrow}Y$가 homeomorphism이라 하고 ${\phi}_*F$를 X상(上)의 presheaf F의 direct image이라 하면 (1) $({\phi}_*F, \;{\phi}_*(f_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$({\phi}_*F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}$의 직적(直積)일 때 오직 그때 한하여 $(F,\;(f_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$의 직적(直積)이다. (2) $({\phi}_*F,\;{\phi}_*(l_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$({\phi}_*F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}$의 직화(直和)일 때 오직 그때 한하여 $(F,\;(l_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$$(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$의 직화(直和)이다. Let $(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$ be an indexed set of presheaves of abelian group on topological space X. We can define the cartesian product $$\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda}$$ of $(F_{\lambda})_{{\lambda}{\epsilon}{\Lambda}})$ by $$(\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda})(U)=\prod_{{\lambda}{\epsilon}{\Lambda}}(F_{\lambda}(U))$$ for U open in X $${\rho}_v^u:\;(\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda})(U){\rightarrow}(\prod_{{\lambda}{\epsilon}{\Lambda}}\;F_{\lambda})(V)((s_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}{\rightarrow}(_{\lambda}{\rho}_v^u(s_{\lambda}))_{{\lambda}{\epsilon}{\Lambda}})$$ for $V{\subseteq}U$ open in X where $_{\lambda}{\rho}^U_V$ is a restriction of $F_{\lambda}$, And we have natural presheaf morphisms ${\pi}_{\lambda}$ and ${\iota}_{\lambda}$ such that ${\pi}_{\lambda}(U):\;({\prod}_\;F_{\lambda})(U){\rightarrow}F_{\lambda}(U)((s_{\lambda})_{{\lambda}{\epsilon}{\Lambda}}{\rightarrow}s_{\lambda})$ ${\iota}_{\lambda}(U):\;F_{\lambda}(U){\rightarrow}({\prod}\;F_{\lambda})(U)(s_{\lambda}{\rightarrow}(o,o,{\cdots}\;{\cdots}o,s_{\lambda},o,{\cdots}\;{\cdots}o)$ for $(s_{\lambda}){\epsilon}{\prod}_{\lambda}\;F_{\lambda}(U)$ and $(s_{\lambda}){\epsilon}F_{\lambda}(U)$.

  • PDF

Sensor-Based Path Planning for Planar Two-identical-Link Robots by Generalized Voronoi Graph (일반화된 보로노이 그래프를 이용한 동일 두 링크 로봇의 센서 기반 경로계획)

  • Shao, Ming-Lei;Shin, Kyoo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6986-6992
    • /
    • 2014
  • The generalized Voronoi graph (GVG) is a topological map of a constrained environment. This is defined in terms of workspace distance measurements using only sensor-provided information, with a robot having a maximum distance from obstacles, and is the optimum for exploration and obstacle avoidance. This is the safest path for the robot, and is very significant when studying the GVG edges of highly articulated robots. In previous work, the point-GVG edge and Rod-GVG were built with point robot and rod robot using sensor-based control. An attempt was made to use a higher degree of freedom robot to build GVG edges. This paper presents GVG-based a new local roadmap for the two-link robot in the constrained two-dimensional environment. This new local roadmap is called the two-identical-link generalized Voronoi graph (L2-GVG). This is used to explore an unknown planar workspace and build a local roadmap in an unknown configuration space $R^2{\times}T^2$ for a planar two-identical-link robot. The two-identical-link GVG also can be constructed using only sensor-provided information. These results show the more complex properties of two-link-GVG, which are very different from point-GVG and rod-GVG. Furthermore, this approach draws on the experience of other highly articulated robots.