ALMOST-INVERTIBLE SPACES

  • Long, Paul E. (Department of Mathematical Science, University of Arkansas) ;
  • Herrington, Larry L. (Department of Mathematics, LSU, Alexandria) ;
  • Jankovic, Dragan S. (Department of Mathematics, Faculty of Civil Engineering, University of Belgrade)
  • Published : 1986.08.01

Abstract

A topological space (X,.tau.) is called invertible [7] if for each proper open set U in (X,.tau.) there exists a homoemorphsim h:(X,.tau.).rarw.(X,.tau.) such that h(X-U).contnd.U. Doyle and Hocking [7] and Levine [13], as well as others have investigated properties of invertible spaces. Recently, Crosseley and Hildebrand [5] have introduced the concept of semi-invertibility, which is weaker than that of invertibility, by replacing "homemorphism" in the definition of invertibility with "semihomemorphism", A space (X,.tau.) is said to be semi-invertible if for each proper semi-open set U in (X,.tau.) there exists a semihomemorphism h:(X,.tau.).rarw.(X,.tau.) such that h(X-U).contnd.U. The purpose of the present article is to introduce the class of almost-invertible spaces containing the class of semi-invertible spaces and to investigate its properties. One of the primary concerns will be to determine when a given local property in an almost-invertible space is also a global property. We point out that many of the results obtained can be applied in the cases of semi-invertible spaces and invertible spaces. For example, it is shown that if an invertible space (X,.tau.) has a nonempty open subset U which is, as a subspace, H-closed (resp. lightly compact, pseudocompact, S-closed, Urysohn, Urysohn-closed, extremally disconnected), then so is (X,.tau.).hen so is (X,.tau.).

Keywords