A COUNTEREXAMPLE FOR IMPROVED SOBOLEV INEQUALITIES OVER THE 2-ADIC GROUP

DIEGO CHAMORRO

ABSTRACT. On the framework of the 2-adic group \mathbb{Z}_2 , we study a Sobolevlike inequality where we estimate the L^2 norm by a geometric mean of the BV norm and the $\dot{B}_{\infty}^{-1,\infty}$ norm. We first show, using the special topological properties of the p-adic groups, that the set of functions of bounded variations BV can be identified to the Besov space $\dot{B}_1^{1,\infty}$. This identification lead us to the construction of a counterexample to the improved Sobolev inequality.

1. Introduction

The general improved Sobolev inequalities were initially introduced by P. Grard, Y. Meyer and F. Oru in [6]. For a function f such that $f \in \dot{W}^{s_1,p}(\mathbb{R}^n)$ and $f \in \dot{B}_{\infty}^{-\beta,\infty}(\mathbb{R}^n)$, these inequalities read as follows:

(1)
$$||f||_{\dot{W}^{s,q}} \le C||f||_{\dot{W}^{s_1,p}}^{\theta} ||f||_{\dot{B}_{\infty}^{-\beta},\infty}^{1-\theta},$$

where $1 , <math>\theta = p/q$, $s = \theta s_1 - (1 - \theta)\beta$ and $-\beta < s < s_1$. The method used for proving these estimates relies on the Littlewood-Paley decomposition and on a dyadic bloc manipulation and this explains the fact that the value p = 1 is forbidden here.

In order to study the case p=1, it is necessary to develop other techniques. The case when p=1, s=0 and $s_1=1$ was treated by M. Ledoux in [11] using a special cut-off function; while the case $s_1=1$ and p=1 was studied by A. Cohen, W. Dahmen, I. Daubechies and R. De Vore in [5]. In this last article, the authors give a BV-norm weak estimation using wavelet coefficients and isoperimetric inequalities and obtained, for a function f such that $f \in BV(\mathbb{R}^n)$ and $f \in \dot{B}_{\infty}^{-\beta,\infty}(\mathbb{R}^n)$, the estimation below:

(2)
$$||f||_{\dot{W}^{s,q}} \le C||f||_{BV}^{1/q}||f||_{\dot{B}_{\infty}^{-\beta,\infty}}^{1-1/q},$$

where $1 < q \le 2$, $0 \le s < 1/q$ and $\beta = (1 - sq)/(q - 1)$.

Received November 8, 2010; Revised November 12, 2012. 2010 Mathematics Subject Classification. 22E35, 46E35. Key words and phrases. Sobolev inequalities, p-adic groups. In a previous work (see [3], [4]), we studied the possible generalizations of inequalities of type (1) and (2) to other frameworks than \mathbb{R}^n . In particular, we worked over stratified Lie groups and over polynomial volume growth Lie groups and we obtained some new weak-type estimates.

The aim of this paper is to study inequalities of type (1) and (2) in the setting of the 2-adic group \mathbb{Z}_2 . The main reason for working in the framework of \mathbb{Z}_2 is that this group is completely different from \mathbb{R}^n and from stratified or polynomial Lie groups. Indeed, since the 2-adic group is totally discontinuous, it is not absolutely trivial to give a definition for smoothness measuring spaces. Thus, the first step to do, in order to study these Sobolev-like inequalities, is to give an adapted characterization of such functional spaces. In the present article, this will be achieved using the Littlewood-Paley approach and, once this task is done, we will immediatly prove -following the classical path exposed in [6]- the inequalities (1) in the setting of the 2-adic group \mathbb{Z}_2 .

For the estimate (2), we introduce the BV space in the following manner: we will say that $f \in BV(\mathbb{Z}_2)$ if there exists a constant C > 0 such that

$$\int_{\mathbb{Z}_2} |f(x+y) - f(x)| dx \le C|y|_2 \quad (\forall y \in \mathbb{Z}_2).$$

As a surprising fact, we obtain the follwing.

Theorem 1. We have the following relationship between the space of functions of bounded variation $BV(\mathbb{Z}_2)$ and the Besov space $\dot{B}_1^{1,\infty}(\mathbb{Z}_2)$:

$$BV(\mathbb{Z}_2) \simeq \dot{B}_1^{1,\infty}(\mathbb{Z}_2).$$

Of course, this identification is false in \mathbb{R}^n and it is this special relationship in \mathbb{Z}_2 that give us our principal theorem which is the 2-adic counterpart of the inequality (2):

Theorem 2. The following inequality is false in \mathbb{Z}_2 . There is not an universal constant C > 0 such that we have

$$||f||_{L^2}^2 \le C||f||_{BV}||f||_{\dot{B}^{-1,\infty}_{\infty}}$$

for all $f \in BV \cap \dot{B}^{-1,\infty}_{\infty}(\mathbb{Z}_2)$.

This striking fact says that the improved Sobolev inequalities of type (2) depend on the group's structure and that they are no longer true for the 2-adic group \mathbb{Z}_2 .

The plan of the article is the following: in Section 2 we recall some well known properties about p-adic groups, in Section 3 we define Sobolev and Besov spaces, in Section 4 we prove Theorem 1 and, finally, we prove Theorem 2 in Section 5.

Before finishing these preliminary remarks, it is important to say that the inequality (1) was generalized in [13] where the Besov space $\dot{B}_{\infty}^{-\beta,\infty}$ is replaced by the BMO space. Thus, with the study of p-adic BMO functions given in

[7] and [8] it would be interesting to investigate if such generalization is still valid in a p-adic setting.

2. p-adic groups

We write a|b when a divide b or, equivalently, when b is a multiple of a. Let p be any prime number, for $0 \neq x \in \mathbb{Z}$, we define the p-adic valuation of x by $\gamma(x) = \max\{r: p^r|x\} \geq 0$ and, for any rational number $x = \frac{a}{b} \in \mathbb{Q}$, we write $\gamma(x) = \gamma(a) - \gamma(b)$. Furthermore if x = 0, we agree to write $\gamma(0) = +\infty$.

Let $x \in \mathbb{Q}$ and p be any prime number, with the p-adic valuation of x we can construct a norm by writing

(3)
$$|x|_p = \begin{cases} p^{-\gamma} & \text{if } x \neq 0 \\ p^{-\infty} = 0 & \text{if } x = 0. \end{cases}$$

This expression satisfy the following properties

- a) $|x|_p \ge 0$, and $|x|_p = 0 \iff x = 0$;
- b) $|xy|_p = |x|_p |y|_p;$
- c) $|x+y|_p \le \max\{|x|_p, |y|_p\}$, with equality when $|x|_p \ne |y|_p$.

When a norm satisfy c) it is called a non-Archimedean norm and an interesting fact is that over \mathbb{Q} all the possible norms are equivalent to $|\cdot|_p$ for some p: this is the so-called Ostrowski theorem (see [1] for a proof).

Definition 2.1. Let p be any prime number. We define the field of p-adic numbers \mathbb{Q}_p as the completion of \mathbb{Q} when using the norm $|\cdot|_p$.

We present in the following lines the algebraic structure of the set \mathbb{Q}_p . Every p-adic number $x \neq 0$ can be represented in a unique manner by the formula

(4)
$$x = p^{\gamma}(x_0 + x_1p + x_2p^2 + \cdots),$$

where $\gamma = \gamma(x)$ is the *p*-adic valuation of x and x_j are integers such that $x_0 > 0$ and $0 \le x_j \le p-1$ for $j=1,2,\ldots$ Remark that this canonical representation implies the identity $|x|_p = p^{-\gamma}$.

Let $x, y \in \mathbb{Q}_p$, using the formula (4) we define the sum of x and y by $x + y = p^{\gamma(x+y)}(c_0 + c_1p + c_2p^2 + \cdots)$ with $0 \le c_j \le p-1$ and $c_0 > 0$, where $\gamma(x+y)$ and c_j are the unique solution of the equation

$$p^{\gamma(x)}(x_0 + x_1p + x_2p^2 + \cdots) + p^{\gamma(y)}(y_0 + y_1p + y_2p^2 + \cdots)$$

= $p^{\gamma(x+y)}(c_0 + c_1p + c_2p^2 + \cdots).$

Furthermore, for $a, x \in \mathbb{Q}_p$, the equation a + x = 0 has a unique solution in \mathbb{Q}_p given by x = -a. In the same way, the equation ax = 1 has a unique solution in \mathbb{Q}_p : x = 1/a.

We take now a closer look at the topological structure of \mathbb{Q}_p . With the norm $|\cdot|_p$ we construct a distance over \mathbb{Q}_p by writing

$$(5) d(x,y) = |x - y|_p$$

and we define the balls $B_{\gamma}(x) = \{y \in \mathbb{Q}_p : d(x,y) \leq p^{\gamma}\}$ with $\gamma \in \mathbb{Z}$. Remark that, from the properties of the *p*-adic valuation, this distance has the *ultra-metric* property (i.e., $d(x,y) \leq \max\{d(x,z), d(z,y)\} \leq |x|_p + |y|_p$).

We gather with the next proposition some important facts concerning the balls in \mathbb{Q}_p .

Proposition 2.1. Let γ be an integer, then we have

- 1) the ball $B_{\gamma}(x)$ is an open and a closed set for the distance (5).
- 2) every point of $B_{\gamma}(x)$ is its center.
- 3) \mathbb{Q}_p endowed with this distance is a complete Hausdorff metric space.
- 4) \mathbb{Q}_p is a locally compact set.
- 5) the p-adic group \mathbb{Q}_p is a totally discontinuous space.

For a proof of this proposition and more details see the books [1], [10] or [14].

3. Functional spaces

In this article, we will work with the subset \mathbb{Z}_2 of \mathbb{Q}_2 which is defined by $\mathbb{Z}_2 = \{x \in \mathbb{Q}_2 : |x|_2 \leq 1\}$, and we will focus on real-valued functions over \mathbb{Z}_2 . Since \mathbb{Z}_2 is a locally compact commutative group, there exists a Haar measure dx which is translation invariant i.e., d(x+a) = dx, furthermore we have the identity $d(xa) = |a|_2 dx$ for $a \in \mathbb{Z}_2^*$. We will normalize the measure dx by setting

$$\int_{\{|x|_2 \le 1\}} dx = 1.$$

This measure is then unique and we will note |E| the measure for any subset E of \mathbb{Z}_2 .

Another type of measures can be considered on the p-adic setting (see for example [9]). However, in this article we will only work with the previous one.

Lebesgue spaces $L^p(\mathbb{Z}_2)$ are thus defined in a natural way:

 $||f||_{L^p} = (\int_{\mathbb{Z}_2} |f(x)|^p dx)^{1/p}$ for $1 \leq p < +\infty$, with the usual modifications when $p = +\infty$.

Let us now introduce the Littlewood-Paley decomposition in \mathbb{Z}_2 . We note \mathcal{F}_j the Boole algebra formed by the equivalence classes $E \subset \mathbb{Z}_2$ modulo the subgroup $2^j\mathbb{Z}_2$. Then, for any function $f \in L^1(\mathbb{Z}_2)$, we call $S_j(f)$ the conditionnal expectation of f with respect to \mathcal{F}_j :

$$S_j(f)(x) = \frac{1}{|B_j(x)|} \int_{B_j(x)} f(y) dy.$$

The dyadic blocks are thus defined by the formula $\Delta_j(f) = S_{j+1}(f) - S_j(f)$ and the Littlewood-Paley decomposition of a function $f: \mathbb{Z}_2 \longrightarrow \mathbb{R}$ is given by

(6)
$$f = S_0(f) + \sum_{j=0}^{+\infty} \Delta_j(f) \quad \text{where } S_0(f) = \int_{\mathbb{Z}_2} f(x) dx.$$

We will need in the sequel some very special sets noted $Q_{j,k}$. Here is the definition and some properties:

Proposition 3.1. Let $j \in \mathbb{N}$ and $k = \{0, 1, \dots, 2^j - 1\}$. Define the subset $Q_{j,k}$

(7)
$$Q_{j,k} = \{k + 2^j \mathbb{Z}_2\}.$$

Then

- 1) We have the identity $\mathcal{F}_j = \bigcup_{0 \le k < 2^j} Q_{j,k}$,
- 2) For $k = \{0, 1, ..., 2^{j} 1\}$ the sets $Q_{j,k}$ are mutually disjoint, 3) $|Q_{j,k}| = 2^{-j}$ for all k,
- 4) the 2-adic valuation is constant over $Q_{j,k}$.

The verifications are easy and left to the reader.

With the Littlewood-Paley decomposition given in (6), we obtain the following equivalence for the Lebesgue spaces $L^p(\mathbb{Z}_2)$ with 1 :

$$||f||_{L^p} \simeq ||S_0(f)||_{L^p} + \left\| \left(\sum_{j \in \mathbb{N}} |\Delta_j f|^2 \right)^{1/2} \right\|_{L^p}.$$

See the book [12], Chapter IV, for a general proof.

Let us turn now to smoothness measuring spaces. As said in the introduction, it is not absolutely trivial to define Sobolev and Besov spaces over \mathbb{Z}_2 since we are working in a totally discontinuous setting. Here is an example of this situation with the Sobolev space $W^{1,2}$: one could try to define the quantity $|\nabla f|$ by the formula

$$|\nabla f| = \lim_{\delta \to 0} \sup_{d(x,y) \le \delta} \frac{|f(x) - f(y)|}{d(x,y)}$$

and define the Sobolev space $W^{1,2}(\mathbb{Z}_2)$ by the norm

(8)
$$||f||_* = ||f||_{L^2} + \left(\int_{\mathbb{Z}_2} |\nabla f|^2 dx\right)^{1/2}.$$

Now, using the Littlewood-Paley decomposition we can also write

$$||f||_{**} = ||S_0 f||_{L^2} + \left\| \left(\sum_{j \in \mathbb{N}} 2^{2j} |\Delta_j f|^2 \right)^{1/2} \right\|_2.$$

However, the quantities $\|\cdot\|_*$ and $\|\cdot\|_{**}$ are not equivalent: in the case of (8) consider a function $f = c_k$ constant over each $Q_{j,k} = \{k + 2^j \mathbb{Z}_2\}$ for some fixed j. Then we have $|\nabla f| \equiv 0$ and for these functions the norm $\|\cdot\|_*$ would be equal to the L^2 norm.

This is the reason why we will use in this article the Littlewood-Paley approach to characterize Sobolev spaces:

(9)
$$||f||_{W^{s,p}} \simeq ||S_0 f||_{L^p} + \left\| \left(\sum_{j \in \mathbb{N}} 2^{2js} |\Delta_j f|^2 \right)^{1/2} \right\|_{L^p},$$

with 1 and <math>s > 0. For Besov spaces we will define them by the norm

(10)
$$||f||_{B_p^{s,q}} \simeq ||S_0 f||_{L^p} + \left(\sum_{j \in \mathbb{N}} 2^{jsq} ||\Delta_j f||_{L^p}^q\right)^{1/q},$$

where $s \in \mathbb{R}$, $1 \le p, q < +\infty$ with the necessary modifications when $p, q = +\infty$.

Remark 1. For homogeneous functional spaces $\dot{W}^{s,p}$ and $\dot{B}_{p}^{s,q}$, we drop out the term $||S_0f||_{L^p}$ in (9) and (10).

Let us give some simple examples of function belonging to these functional spaces.

1) The function $f(x) = \log_2 |x|_2$ is in $\dot{B}_1^{1,\infty}(\mathbb{Z}_2)$. First note that $|x|_2 = 2^{-\gamma(x)}$ and thus $f(x) = -\gamma(x)$. Recall (cf. Proposition 3.1) that over each set $Q_{j,k}$, the quantity $\gamma(x)$ is constant, so the dyadic bloc $\Delta_j f$ is given by

$$\Delta_j f(x) = \begin{cases} -1 & \text{over } Q_{j+1,0} \\ 0 & \text{elsewhere.} \end{cases}$$

Hence, taking the L^1 norm, we have $\|\Delta_j f\|_{L^1} = \frac{1}{2}2^{-j}$ and then $f \in \dot{B}_1^{1,\infty}(\mathbb{Z}_2)$.

2) Set $h(x) = 1/|x|_2$, we have $h \in \dot{B}_{\infty}^{-1,\infty}$. For this, we must verify $\sup_{j \geq 0} 2^{-j} \|\Delta_j h\|_{L^{\infty}} < +\infty$. By definition we obtain $h(x) = 2^{\gamma(x)}$ and then

$$\Delta_j h(x) = \begin{cases} 2^j & \text{over } Q_{j+1,0} \\ 0 & \text{elsewhere.} \end{cases}$$

We finally obtain $\|\Delta_j h\|_{L^{\infty}} = 2^j$ and hence $2^{-j} \|\Delta_j h\|_{L^{\infty}} = 1$ for all j, so we write $h \in \dot{B}_{\infty}^{-1,\infty}$.

With the Littlewood-Paley characterisation of Sobolev spaces and Besov spaces given in (9) and (10) we have the following theorem:

Theorem 3. In the framework of the 2-adic group \mathbb{Z}_2 we have, for a function f such that $f \in \dot{W}^{s_1,p}(\mathbb{Z}_2)$ and $f \in \dot{B}_{\infty}^{-\beta,\infty}(\mathbb{Z}_2)$, the inequality

$$||f||_{\dot{W}^{s,q}} \le C||f||_{\dot{W}^{s_1,p}}^{\theta} ||f||_{\dot{B}^{-\beta,\infty}}^{1-\theta},$$

where $1 , <math>\theta = p/q$, $s = \theta s_1 - (1 - \theta)\beta$ and $-\beta < s < s_1$.

Proof. We start with an interpolation result: let $(a_j)_{j\in\mathbb{N}}$ be a sequence, let $s = \theta s_1 - (1-\theta)\beta$ with $\theta = p/q$, then we have for $r, r_1, r_2 \in [1, +\infty]$ the estimate

$$||2^{js}a_j||_{\ell^r} \le C||2^{js_1}a_j||_{\ell^{r_1}}^{\theta}||2^{-j\beta}a_j||_{\ell^{r_2}}^{1-\theta}.$$

See [2] for a proof. Apply this estimate to the dyadic blocks $\Delta_i f$ to obtain

$$\left(\sum_{j\in\mathbb{Z}} 2^{2js} |\Delta_j f(x)|^2\right)^{1/2}$$

$$\leq C \left(\sum_{j\in\mathbb{Z}} 2^{2js_1} |\Delta_j f(x)|^2\right)^{\theta/2} \left(\sup_{j\in\mathbb{Z}} 2^{-j\beta} |\Delta_j f(x)|\right)^{1-\theta}.$$

To finish, compute the L^q norm of the preceding quantities.

4. The $BV(\mathbb{Z}_2)$ space and the proof of Theorem 1

We study in this section the space of functions of bounded variation BV and we will prove some surprising facts in the framework of 2-adic group \mathbb{Z}_2 . Let us start recalling the definition of this space:

Definition 4.1. If f is a real-valued function over \mathbb{Z}_2 , we will say that $f \in BV(\mathbb{Z}_2)$ if there exists a constant C > 0 such that

(11)
$$\int_{\mathbb{Z}_2} |f(x+y) - f(x)| dx \le C|y|_2, \quad (\forall y \in \mathbb{Z}_2).$$

We prove now Theorem 1 which asserts that in \mathbb{Z}_2 , the BV space can be identified to the Besov space $\dot{B}_1^{1,\infty}$. For this, we will use two steps given by Propositions 4.1 and 4.2 below.

Proposition 4.1. If f is a real-valued function over \mathbb{Z}_2 belonging to the Besov space $\dot{B}_1^{1,\infty}$, then $f \in BV$ and we have the inclusion $\dot{B}_1^{1,\infty} \subseteq BV$.

Proof. Let $f \in \dot{B}_{1}^{1,\infty}(\mathbb{Z}_{2})$ and let us fix $|y|_{2} = 2^{-m}$. We have to prove the following estimation for all m > 0

$$I = \int_{\mathbb{Z}_2} |f(x+y) - f(x)| dx \le C \, 2^{-m}.$$

Using the Littlewood-Paley decomposition given in (6), we will work on the formula below

$$I = \left\| \left(S_0 f(x+y) + \sum_{j \ge 0} \Delta_j f(x+y) \right) - \left(S_0 f(x) + \sum_{j \ge 0} \Delta_j f(x) \right) \right\|_{L^1}.$$

Then, by the dyadic block's properties we have to study

(12)
$$I \leq \|S_m f(x+y) - S_m f(x)\|_{L^1} + \sum_{j=m+1}^{+\infty} \|\Delta_j f(x+y) - \Delta_j f(x)\|_{L^1}.$$

We estimate this inequality with the two following lemmas.

Lemma 4.1. The first term in (12) is identically zero.

Proof. Since we have fixed $|y|_2 = 2^{-m}$, then for $x \in Q_{m,k}$, we have $x+y \in Q_{m,k}$ with $k = \{0, \ldots, 2^m - 1\}$. Applying the operators S_m to the functions f(x+y) and f(x) we get the desired result.

The second term in (12) is treated by the next lemma.

Lemma 4.2. Under the hypothesis of Proposition 4.1 and for $|y|_2 = 2^{-m}$ we have

$$\sum_{j=m+1}^{+\infty} \|\Delta_j f(x+y) - \Delta_j f(x)\|_{L^1} \le C 2^{-m}.$$

Proof. Indeed.

$$\sum_{j=m+1}^{+\infty} \|\Delta_j f(x+y) - \Delta_j f(x)\|_{L^1} \le 2 \sum_{j=m+1}^{+\infty} \|\Delta_j f\|_{L^1}.$$

We use now the fact $\|\Delta_j f\|_{L^1} \leq C \, 2^{-j}$ for all j, since $f \in \dot{B}_1^{1,\infty}$, to get

$$\sum_{j=m+1}^{+\infty} \|\Delta_j f(x+y) - \Delta_j f(x)\|_{L^1} \le C 2^{-m}.$$

With these two lemmas, and getting back to (12), we deduce the following inequality for all $y \in \mathbb{Z}_2$:

$$\int_{\mathbb{Z}_2} |f(x+y) - f(x)| dx \le C |y|_2$$

and this concludes the proof of Proposition 4.1.

Our second step in order to prove Theorem 1 is the next result.

Proposition 4.2. In \mathbb{Z}_2 we have the inclusion $BV(\mathbb{Z}_2) \subseteq \dot{B}_1^{1,\infty}(\mathbb{Z}_2)$.

Proof. Observe that we can characterize the Besov space $\dot{B}_1^{1,\infty}(\mathbb{Z}_2)$ by the condition

$$||f(\cdot + y) + f(\cdot - y) - 2f(\cdot)||_{L^1} \le C|y|_2, \quad \forall y \ne 0.$$

Let f be a function in $BV(\mathbb{Z}_2)$, then we have

$$||f(\cdot + y) - f(\cdot)||_{L^1} \le C |y|_2.$$

Summing $||f(\cdot - y) - f(\cdot)||_{L^1}$ in both sides of the previous inequality we obtain

$$||f(\cdot+y)-f(\cdot)||_{L^1} + ||f(\cdot-y)-f(\cdot)||_{L^1} \le C||y||_2 + ||f(\cdot-y)-f(\cdot)||_{L^1}$$

and by the triangular inequality we have

$$||f(\cdot + y) + f(\cdot - y) - 2f(\cdot)||_{L^1} \le C ||y||_2 + ||f(\cdot - y) - f(\cdot)||_{L^1}.$$

We thus obtain

$$||f(\cdot + y) + f(\cdot - y) - 2f(\cdot)||_{L^1} \le 2C |y|_2.$$

We have proved, in the setting of the 2-adic group \mathbb{Z}_2 , the inequalities

$$C_1 \|f\|_{\dot{B}_1^{1,\infty}} \le \|f\|_{BV} \le C_2 \|f\|_{\dot{B}_1^{1,\infty}},$$

so Theorem 1 follows.

5. Improved Sobolev inequalities, BV space and proof of Theorem 2

We do not give here a global treatment of the family of inequalities of type (2); instead we focus on the next inequality

(13)
$$||f||_{L^2}^2 \le C||f||_{BV}||f||_{\dot{B}_{\infty}^{-1,\infty}}$$

and we want to know if this estimation is true in a 2-adic framework. Since in the \mathbb{Z}_2 setting we have the identification $||f||_{BV} \simeq ||f||_{\dot{B}^{1,\infty}_{\infty}}$, the estimation (13) becomes

(14)
$$||f||_{L^{2}}^{2} \leq C||f||_{\dot{B}_{1}^{1,\infty}}||f||_{\dot{B}_{\infty}^{-1,\infty}}.$$

This remark lead us to Theorem 2 which states that the previous inequalities are false.

Proof. We will construct a counterexample by means of the Littlewood-Paley decomposition, so it is worth to recall very briefly the dyadic bloc characterization of the norms involved in inequality (14). For the L^2 norm we have $\|f\|_{L^2}^2 = \sum_{j \in \mathbb{N}} \|\Delta_j f\|_{L^2}^2$, while for the Besov spaces $\dot{B}_1^{1,\infty}$ and $\dot{B}_{\infty}^{-1,\infty}$ we have

$$||f||_{\dot{B}_{1}^{1,\infty}} = \sup_{j \in \mathbb{N}} 2^{j} ||\Delta_{j} f||_{L^{1}} \quad \text{and}$$
 $||f||_{\dot{B}_{\infty}^{-1,\infty}} = \sup_{j \in \mathbb{N}} 2^{-j} ||\Delta_{j} f||_{L^{\infty}}.$

We construct a function $f: \mathbb{Z}_2 \longrightarrow \mathbb{R}$ by considering his values over the dyadic blocs and we will use for this the sets $Q_{j,k}$ defined in (7). First fix α and β two non negative real numbers and j_0, j_1 two integers such that $0 \leq j_0 \leq j_1$ with the condition

$$2^{2j_0} \le \frac{\beta}{\alpha}.$$

Now define N_j as a function of α and β :

(15)
$$N_j = 2^j$$
 if $0 \le j \le j_0$ and $N_j = \frac{\beta}{\alpha} 2^{-j} \le 2^j$ if $j_0 < j \le j_1$.

and write

$$\Delta_{j}f(x) = \begin{cases} \alpha 2^{j} & \text{over} \quad Q_{j+1,0}, \\ -\alpha 2^{j} & \text{over} \quad Q_{j+1,1}, \\ \alpha 2^{j} & \text{over} \quad Q_{j+1,2}, \\ -\alpha 2^{j} & \text{over} \quad Q_{j+1,3}, \\ & \vdots & \\ \alpha 2^{j} & \text{over} \quad Q_{j+1,2N_{j}-2}, \\ -\alpha 2^{j} & \text{over} \quad Q_{j+1,2N_{j}-1}, \\ 0 & \text{elsewhere.} \end{cases}$$

Once this function is fixed, we compute the following norms

- $$\begin{split} \bullet & \ \|\Delta_j f\|_{L^1} = \sum_{k=0}^{N_j} \alpha 2^j 2^{-j} = \alpha N_j, \\ \bullet & \ \|\Delta_j f\|_{L^\infty} = \alpha 2^j, \\ \bullet & \ \|\Delta_j f\|_{L^2}^2 = \sum_{k=0}^{N_j} \alpha^2 2^{2j} 2^{-j} = \alpha^2 2^j N_j, \end{split}$$

and we build from these quantities the Besov and Lebesgue norms in the following manner:

- 1) For the Besov space $\dot{B}_{\infty}^{-1,\infty}$: $\|f\|_{\dot{B}_{\infty}^{-1,\infty}} = \sup_{0 \le j \le j_1} 2^{-j} \alpha 2^j = \alpha,$
- 2) For the Besov space $\dot{B}_1^{1,\infty}$: By the definition (15) of N_j we have $2^j \|\Delta_j f\|_{L^1} = 2^j \alpha N_j = 2^{2j} \alpha$ if $0 \le j \le j_0$ and $2^j \|\Delta_j f\|_{L^1} = \beta$ if $j_0 < j \le j_1$. Since $2^{2j_0} \le \frac{\beta}{\alpha}$ we have: $||f||_{\dot{B}^{1,\infty}} = \beta.$
- 3) For the Lebesgue space L^2 :

$$||f||_{L^{2}}^{2} = \sum_{j=0}^{j_{1}} \alpha^{2} 2^{j} N_{j} = \sum_{j=0}^{j_{0}} \alpha^{2} 2^{2j} + \sum_{j>j_{0}}^{j_{1}} \alpha^{2} 2^{j} \frac{\beta}{\alpha} 2^{-j} = \sum_{j=0}^{j_{0}} \alpha^{2} 2^{2j} + (j_{1} - j_{0}) \alpha \beta$$
$$= \alpha \beta \left(\frac{\alpha}{\beta} \sum_{j=0}^{j_{0}} 2^{2j} + (j_{1} - j_{0}) \right).$$

With the condition $2^{2j_0} \leq \frac{\beta}{\alpha}$, we obtain from the previous formula that

$$||f||_{L^2}^2 \simeq \alpha \beta(j_1 - j_0) = ||f||_{\dot{B}_1^{1,\infty}} ||f||_{\dot{B}_{\infty}^{-1,\infty}} (j_1 - j_0).$$

Thus, getting back to (14) and therefore to (13), we have for an universal constant C the inequality

$$||f||_{\dot{B}_{1}^{1,\infty}}||f||_{\dot{B}_{\infty}^{-1,\infty}}(j_{1}-j_{0}) \leq C||f||_{\dot{B}_{1}^{1,\infty}}||f||_{\dot{B}_{\infty}^{-1,\infty}}$$

$$\iff (j_{1}-j_{0}) \leq C,$$

which is false since we can freely choose the values of j_1 and j_0 . Theorem 2 is proved.

References

- [1] Y. Amice, Les nombres p-adiques, Presses Universitaires de France, Paris, 1975.
- [2] J. Bergh and J. Löfström, *Interpolation Spaces. An Introduction*, Grundlehren der Mathematischen Wissenschaften, 223. Springer Verlag, 1976.
- [3] D. Chamorro, Improved Sobolev Inequalities and Muckenhoupt weights on stratified Lie groups, J. Math. Anal. Appl. **377** (2011), no. 2, 695-09.
- [4] ______, Some functional inequalities on polynomial volume growth Lie groups, Canad.
 J. Math. 64 (2012), no. 3, 481–496.
- [5] A. Cohen, W. Dahmen, I. Daubechies, and R. De Vore, Harmonic Analysis of the space BV, Rev. Mat. Iberoamericana 19 (2003), no. 1, 235–263.
- [6] P. Gérard, Y. Meyer, and F. Oru, *Inégalités de Sobolev Précisées*, Equations aux Dérivées Partielles, Séminaire de l'Ecole Polytechnique, exposé n° IV (1996-1997).
- [7] K. Ikeda, T. Kim, and T. K. Shiratani, On p-adic bounded functions, Mem. Fac. Sci. Kyushu Univ. Ser. A 46 (1992), no. 2, 341–349.
- [8] L. C. Jang, T. Kim, J.-W. Son, and S.-H. Rim, On p-adic bounded functions. II, J. Math. Anal. Appl. 264 (2001), no. 1, 21–31.
- $[9]\ {\it T.\ Kim,\ q-Volkenborn\ integration.}$ Russ. J. Math. Phys. 9 (2002), no. 3, 288–299.
- [10] N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta-functions, GTM 58. Springer Verlag, 1977.
- [11] M. Ledoux, On improved Sobolev embedding theorems, Math. Res. Lett. 10 (2003), no. 5-6, 659-669.
- [12] E. M. Stein, Topics in Harmonic Analysis, Annals of mathematics Studies, 63. Princeton University Press, 1970.
- [13] P. Strzelecki, Gagliardo-Nirenberg inequalities with a BMO term, Bull. Lond. Math. Soc. 38 (2006), no. 2, 294–300.
- [14] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, World Scientific, Singapore, 1994.

Laboratoire d'Analyse et de Probabilités

Université d'Evry Val d'Essonne

Bâtiment I.B.G.B.I.

23 Bd. de France

91037 EVRY CEDEX-FRANCE, FRANCE

E-mail address: diego.chamorro@univ-evry.fr