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ON SUPER CONTINUOUS FUNCTIONS

C.W. BAKER

1. Introduction

B.M. Munshi and D.S. Bassan defined and developed the concept of super
continuity in [5]. The concept has been investigated further by I.L. Reilly and
M. K. Vamanamurthy in [6] where super continuity is characterized in terms of
the semi-regularization topology. Super continuity is related to the concepts of
d-continuity and strong f-continuity developed by T. Noiri in [7]. The purpose
of this note is to derive relationships between super continuity and other strong
continuity conditions and to develop additional properties of super continuous fu-
nctions. Super continuity implies continuity, but the converse implication is false
[5]. Super continuity is strictly between strong @-continuity and d-continuity and
strictly between complete continuity and d-continuity.

The symbols X and Y will denote topological spaces with no separation axioms
assumed unless explicity stated. The closure and interior of a subset U of a space
X will be denoted by CI{(U) and Int(U) respectively and U is said to be regu-
lar open (resp. regular closed) if U=Int[CI(U) (resp. U=CI(Int{U)]. If nec-
essary, a subscript will be added to denote the space in which the closure or in-
terior is taken.

2. Relationships between super continuity and other strong continuities

DEFINITION 1. A function f: X—Y is said to be super continuous [5] (resp.
d-continuous [7], strongly f-continuous [4]) if for each x € X and each open nei-
ghborhood V of f(z), there is an open neighborhood U of z such that f[Int(C!
(U))1c Viresp. flInt(CH{))]cInt[CH{V)], FICI(UY]cV]

DerINITION 2. [2]. A function f: X—Y is said to be strongly continuous if
for every subset A of X, fICI(A))Cf(A)

DerFINITION 3. [1]. A function f: X—Y is said to be completely continuous if
for each open subset V of Y,f~1(V) is a regular open subset of X.

To begin with we collect and extend known relationships among various strong
continuities. The following result is fairly obvious, but to my knowledge has not
appeared in the literature.
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THEOREM 1. If f: XY is strongly continuous, then [ is strongly O-continu-
ous.

Proof. Let x€X and let V be an open neighborhood of f(z) in Y. Let U=
F7H(V). Since f is strongly continuous, f must be continuous. Hence U is open,
Then since f is strongly continuous, f(C/(U))=£(CI(f~}( VIOl ff V) v.

Thus f is strongly f-continuous.

From [1] strong continuity implies complete continuity and the converse impli-
cation does not hold.

From [5] a function is super continuous if and only if the inverse image of
every open set is d-open, that is the union of regularly open sets, Hence compl-
ete continuity implies super continuity.

Based on the above definitions and remarks the following implications are clear:

—scomplete continuity— —continuity
strong continuity— —super continuity— ()
—strong  f—continuity— —0-continuity

The following example and remarks show that none of the converse implications
in(*) hold and that complete continuity and strong f-continuity are independent.
Since d-continuity and continuity are independent [7], neither §-continuity nor
continuity implies super continuity. The following example shows that super co-
ntinuity does not imply either strong f-continuity or complete continuity.

EXAMPLE 1. Let X={a,b,¢} and T={X, ¢, {a}, {c}, {a,c}}. Let f: (X, T)
— (X, T) be the identity mapping. Then f is super continuous, but f is not str-
ongly f-continuous at x==a. Also f is not completely continuous because {a,c} is
open but not regular open.

Since R (the real number) with the usual topology is regular, the identity ma-
pping on R is strongly #-continucus. However, the identity mapping is clearly not
strongly continuous. Also since R contains open sets that are not regular open, the
identity mapping is not completely continuous. Hence strong #-continuity does
not imply either strong continuity or complete continuity.

In Example 6.1 of [1] Arya and Gupta give a completely continuous function
that is not strongly continuous. It is easily seen that this function is also not
strongly f-continuous.

Hence none of the converse implications in (%) hold and strong f~continuity
and complete continuity are independent. Conditions required for reversing some
of the implications in (*) will now be investigated.

DEFINITION 4. [5]. A space X is said to be semi-regular if for each # in X
and each open neighborhood V of z there is an open neighborhood U of z such

that x € UcInt[CI(U))C V.
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THEOREM 2. If f: X—Y is 0~continuous and Y is semi-regular, then f is su-
per continuous.

Proof. Let x&X and let V be an open neighborhood of f(z) in Y. Since Y is
semi-regular, there exists an open neighborhood V; of f{z) in Y such that f(z)
& ViCInt{CI(V))]) C V. Because f is d-continuous there exists an open neighbor-
hood U of z in X such that f(Int(CL(U)))cInt(CI(V)) V. Thus f is super

continuous.

This result slightly extends a result of 7. Noiri’s (Theorem 4.6 in 77 in
which it is stated that if f: X—Y is S-continuous and Y is semi-regular, then
S is continuous. From [5], if f: X—Y is continuous and X is semi-regular,
then f is super continuous. Hence if X and Y are both semi-regular, then con-
tinuity, super continuity and d-continuity are all equivalent.

DEFINITION 5. [7]. A space X is said to be almost-regular if for each regular
closed subset F of X and each = in X-F, there exist disjoint open sets U and V
in X such that z € U and FC V.

THEOREM 3. If f: X—Y is super continuous and X is almost-regular, then
J is strongly O-continuous.

Proof. let X and let V be an open neighborhood of f(z) in Y. Because f
is super continuous, there is an open neighborhood U of z in X such that f(Int
(CI(U))) V. Then since Int (CI(U)] is regular open and X is almost-regular,
there is a regular open set W for which z & WcCI(W) <Int[CI(U)]. Then ob-
viously f[CL{W))C f(Int(CI(U)] V. Hence f is strongly #-continuous.

COROLLARY. If f: XY is a function with X almost-regular and Y semi-reg-
ular, then strong O-continuity, super continuity, and O-continuity are all equiv-
alent.

3. Properties of super continuous functions

The next result follows from the straightforward use of definitions or from Th-
eorem 1 1n [6].

THEOREM 4. Let f: X—Y be a function and let g : XXX Y, given by g(x)
=[x, f(2)), be its graph function. Then g is super continuous if and only if f
is super continuous and X is semi-regular.

DEFINITION 5. [8]. A set U is said to be d-open if for each z in U there is
a regular open set V such that « € VCU. A set is 6-closed if its complement is
o0-open.

The following result is implied by the fact that the inverse image of an open
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set under a super continuous function is d-open {5]. The proof is omitted.

THEOREM 5. If f, g : X—Y are super continuous functions and Y is Hausdorff,
then the set {x e X f(z)=g(x)} is d-closed.

THEOREM 6. If f: X—Y is super continuous and A is an open subset of X,
then flA: A-Y is super continuous.

Proof. Let x € A and let V be an open neighborhood of f(z). Then there exists
an open subset U of X such that 2 € U and f (Intx(CIx(U)))< V. Then
FlInta(Cla(UNA))=f[ANIntx(ANCIx(UNA))}
=f(ANIntx(A) NIntx (Clx (UNA)))}
=f(ANIntx (Clx(UNA))) CfIntx(Clx(U)))C V.
Hence fla: A—Y is super continuous.
The function in Example 1 is super continuous, but the restriction to the set
{b, ¢} is not super continuous. Thus some condition on the set A is necessary in
order for fla: A—Y to be super continuous.

The proof of the next theorem follows easily from the definitions.

THEOREM 7. If f: X—Y is d-continuous and g: Y—Z is super continuous,
then gof : X—Z is super continuous.

COROLLARY. If f: X—Y and g: Y—>Z are super continuous, then gof: X—Z
is super continuous.

4. Sufficient conditions for super contunuity.

A condition that is weaker than d-continuity is related to super continuity. We
make the following definition.

DEFINITION 6. A function f: X—7Y is said to weakly é-continuous if for each
z € X and each open neighborhood V of f(z), there is an open neighborhood U
of x such that f{Int(CL(U)))cCI(V).

The graph of a function f : X— Y, denoted by G(f), is the subset {{z, f(x)) :
z € X} of the product space XX Y. We make the following definition which is
analogous to the definition of #-closed with respect to X in [4].

DerINTION 7. The graph of a function f: X—7Y is said to be d-closed with
respect to X if for each (x,3) € XX Y—G(f), there exist open sets U and V
such that 1€ UcX and y € VC Y and (Int(CI(U)) X V)NG(f)=¢.

DEFINITION 8 [3]. A space Y is rim-compact if for every y in Y and every
open neighborhood V of v, there is an open set W such that y € WCV and the
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boundary of W(Bd(W)) is compact.

In the following sequence of results Theorems 8 and 9 and their proofs are an-
alogous to results obtained for strongly f-continuous functions by Long and Her-
rington. (Theorem 10 and 12 in [47]).

THEOREM 8. If f: X—Y is weakly d-continuous; Y is rim-compact, and G(f)
is G-closed with respect to X, then f is super continuous.

Proof. Let x € X and let V be an open neighborhood of f(z). Since Y is rim-
compact, there is an open set V; such that f(z) € VoC V and Bd(Vy) is compact.
Because f is weakly d-continuous, there is an open neighborhood U of z in X such
that f(Int(CI(U)))CCI(Vy). Let y € Bd(Vy). Since f(x) & V, which is disjoint
from Bd(V,), (x,%)€&G(f). Then since G(f) is d-closed with respect to X,
there exist open sets A, and B, such that z € A, and y € B, and f(Int(CI(4,)))
NB,=¢. The collection {B,:y & Bd(V,)} is an open cover of Bd(V,) which is
compact. Hence there is a finite collection {B,,, By, -+, B,,} for which Bd(V)

cigBﬁ. Let Up= Uﬂ(él A,). Then
fInt(CHU)) Cf(Int(CL(N A,))) <f (N Int(CL(A,))
CA S(Int(CI(A,))
which is disjoint from u B, and hence disjoint from Bd(V,). Thus f(Int

(ClUy))) NBd(Vy) =¢. However f(Int(CI(Up))) C f (Int(CL{U))} ©CL(Vy). The-
refore f (Int(CI(Uy))]} CCl(Vy) —Bd(Vy) C Vy. Hence f is super continuous.

COROLLARY. If f: X—Y is d-continuous; Y is rim-compact and G(f) is o-
closed with respect to X, then f is super continuous.

THEOREM 9. If f: XY is weakly 6-continuous and Y is Hausdorff, then G
(f) is 0-closed with respect to X.

Proof. Let (2,9) € XX Y~G(f). Then y#f(x). Since Y is Hausdorff, there
exist disjoint open sets V and W such that y € W and f(z) € V. Because f is we-
akly d-continuos, there is an open neighborhood U of z for which f(Int(CI
(UNICCI(V). Then (r,y) € (Int(CI(U))IXW and f(Int(CI(U)))CCL(V)
which is disjoint from W. Therefore [(Int(CI(U)))X WING(f)=¢. Thus G
(f) is d-closed with respect to X.

COROLLARY. If f: X—Y is weakly o-continuous, and Y is Hausdorff and
rim-compact, then f is super continuous.

The next theorem follows from the fact that f: X—~Y is super continuous if
and only if f is continuous with respect to the semi-regularization topology on X
(Theorem 1, [6]) and that a function with a compact range space and a closed
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graph is continuous.

THEOREM 10. If f: XY is a function with G(f) O-closed with respect to X
and Y compact, then f is super continuous.
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