• Title/Summary/Keyword: Korean Numbers

Search Result 9,927, Processing Time 0.032 seconds

A NEW FAMILY OF FUBINI TYPE NUMBERS AND POLYNOMIALS ASSOCIATED WITH APOSTOL-BERNOULLI NUMBERS AND POLYNOMIALS

  • Kilar, Neslihan;Simsek, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1605-1621
    • /
    • 2017
  • The purpose of this paper is to construct a new family of the special numbers which are related to the Fubini type numbers and the other well-known special numbers such as the Apostol-Bernoulli numbers, the Frobenius-Euler numbers and the Stirling numbers. We investigate some fundamental properties of these numbers and polynomials. By using generating functions and their functional equations, we derive various formulas and relations related to these numbers and polynomials. In order to compute the values of these numbers and polynomials, we give their recurrence relations. We give combinatorial sums including the Fubini type numbers and the others. Moreover, we give remarks and observation on these numbers and polynomials.

A q-ANALOGUE OF QI FORMULA FOR r-DOWLING NUMBERS

  • Cillar, Joy Antonette D.;Corcino, Roberto B.
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.21-41
    • /
    • 2020
  • In this paper, we establish an explicit formula for r-Dowling numbers in terms of r-Whitney Lah and r-Whitney numbers of the second kind. This is a generalization of the Qi formula for Bell numbers in terms of Lah and Stirling numbers of the second kind. Moreover, we define the q, r-Dowling numbers, q, r-Whitney Lah numbers and q, r-Whitney numbers of the first kind and obtain several fundamental properties of these numbers such as orthogonality and inverse relations, recurrence relations, and generating functions. Hence, we derive an analogous Qi formula for q, r-Dowling numbers expressed in terms of q, r-Whitney Lah numbers and q, r-Whitney numbers of the second kind.

IDENTITIES AND RELATIONS ON THE q-APOSTOL TYPE FROBENIUS-EULER NUMBERS AND POLYNOMIALS

  • Kucukoglu, Irem;Simsek, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.265-284
    • /
    • 2019
  • The main purpose of this paper is to investigate the q-Apostol type Frobenius-Euler numbers and polynomials. By using generating functions for these numbers and polynomials, we derive some alternative summation formulas including powers of consecutive q-integers. By using infinite series representation for q-Apostol type Frobenius-Euler numbers and polynomials including their interpolation functions, we not only give some identities and relations for these numbers and polynomials, but also define generating functions for new numbers and polynomials. Further we give remarks and observations on generating functions for these new numbers and polynomials. By using these generating functions, we derive recurrence relations and finite sums related to these numbers and polynomials. Moreover, by applying higher-order derivative to these generating functions, we derive some new formulas including the Hurwitz-Lerch zeta function, the Apostol-Bernoulli numbers and the Apostol-Euler numbers. Finally, for an application of the generating functions, we derive a multiplication formula, which is very important property in the theories of normalized polynomials and Dedekind type sums.

NEW THEOREM ON SYMMETRIC FUNCTIONS AND THEIR APPLICATIONS ON SOME (p, q)-NUMBERS

  • SABA, N.;BOUSSAYOUD, A.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.243-257
    • /
    • 2022
  • In this paper, we present and prove an new theorem on symmetric functions. By using this theorem, we derive some new generating functions of the products of (p, q)-Fibonacci numbers, (p, q)-Lucas numbers, (p, q)-Pell numbers, (p, q)-Pell Lucas numbers, (p, q)-Jacobsthal numbers and (p, q)-Jacobsthal Lucas numbers with Chebyshev polynomials of the first kind.

ON q-ANALGUE OF THE TWISTED L-FUNCTIONS AND q-TWISTED BERNOULLI NUMBERS

  • Simsek, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.963-975
    • /
    • 2003
  • The aim of this work is to construct twisted q-L-series which interpolate twisted q-generalized Bernoulli numbers. By using generating function of q-Bernoulli numbers, twisted q-Bernoulli numbers and polynomials are defined. Some properties of this polynomials and numbers are described. The numbers $L_{q}(1-n,\;X,\;{\xi})$ is also given explicitly.

APPLICATIONS OF CLASS NUMBERS AND BERNOULLI NUMBERS TO HARMONIC TYPE SUMS

  • Goral, Haydar;Sertbas, Doga Can
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1463-1481
    • /
    • 2021
  • Divisibility properties of harmonic numbers by a prime number p have been a recurrent topic. However, finding the exact p-adic orders of them is not easy. Using class numbers of number fields and Bernoulli numbers, we compute the exact p-adic orders of harmonic type sums. Moreover, we obtain an asymptotic formula for generalized harmonic numbers whose p-adic orders are exactly one.

A NOTE ON BETTI NUMBERS AND RESOLUTIONS

  • Choi, Sang-Ki
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.4
    • /
    • pp.829-839
    • /
    • 1997
  • We study the Betti numbers, the Bass numbers and the resolution of modules under the change of rings. For modules of finite homological dimension, we study the Euler characteristic of them.

  • PDF

AN EXTENSION OF GENERALIZED EULER POLYNOMIALS OF THE SECOND KIND

  • Kim, Y.H.;Jung, H.Y.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.465-474
    • /
    • 2014
  • Many mathematicians have studied various relations beween Euler number $E_n$, Bernoulli number $B_n$ and Genocchi number $G_n$ (see [1-18]). They have found numerous important applications in number theory. Howard, T.Agoh, S.-H.Rim have studied Genocchi numbers, Bernoulli numbers, Euler numbers and polynomials of these numbers [1,5,9,15]. T.Kim, M.Cenkci, C.S.Ryoo, L. Jang have studied the q-extension of Euler and Genocchi numbers and polynomials [6,8,10,11,14,17]. In this paper, our aim is introducing and investigating an extension term of generalized Euler polynomials. We also obtain some identities and relations involving the Euler numbers and the Euler polynomials, the Genocchi numbers and Genocchi polynomials.

q-EXTENSIONS OF GENOCCHI NUMBERS

  • CENKCI MEHMET;CAN MUMUN;KURT VELI
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.183-198
    • /
    • 2006
  • In this paper q-extensions of Genocchi numbers are defined and several properties of these numbers are presented. Properties of q-Genocchi numbers and polynomials are used to construct q-extensions of p-adic measures which yield to obtain p-adic interpolation functions for q-Genocchi numbers. As an application, general systems of congruences, including Kummer-type congruences for q-Genocchi numbers are proved.