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A q-ANALOGUE OF QI FORMULA FOR

r-DOWLING NUMBERS

Joy Antonette D. Cillar and Roberto B. Corcino

Abstract. In this paper, we establish an explicit formula for r-Dowling

numbers in terms of r-Whitney Lah and r-Whitney numbers of the second
kind. This is a generalization of the Qi formula for Bell numbers in terms

of Lah and Stirling numbers of the second kind. Moreover, we define
the q, r-Dowling numbers, q, r-Whitney Lah numbers and q, r-Whitney

numbers of the first kind and obtain several fundamental properties of

these numbers such as orthogonality and inverse relations, recurrence
relations, and generating functions. Hence, we derive an analogous Qi

formula for q, r-Dowling numbers expressed in terms of q, r-Whitney Lah

numbers and q, r-Whitney numbers of the second kind.

1. Introduction

Cheon and Jung [3] defined the r-Dowling numbers, denoted by Dm,r(n, x),
as a sum of the r-Whitney numbers of the second kind

(1) Dm,r(n) =

n∑
k=0

Wm,r(n, k),

which is a generalization of the Dowling numbers introduced by Benoumhani
[1]. Fundamental properties of the r-Dowling numbers were derived such as
the exponential generating function

(2)
∑
n≥0

Dm,r(n)
zn

n!
= exp

(
rz +

emz − 1

m

)
,

and the recurrence relation

(3) Dm,r(n+ 1) = rDm,r(n) +

n∑
j=0

(
n

j

)
mn−jDm,r(j), n ≥ 0.
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In the same paper, Cheon and Jung also defined the r-Whitney Lah numbers,
denoted by Lm,r(n, k), in terms of the r-Whitney numbers of the first kind
wm,r(n, k) and the second kind Wm,r(n, k)

(4) Lm,r(n, k) =

n∑
j=k

wm,r(n, j)Wm,r(j, k),

which generalizes the identity for the Lah numbers in terms of the Stirling
numbers of the first kind s(n, k) and the second kind S(n, k)

(5) (−1)nL(n, k) =

n∑
j=k

(−1)js(n, j)S(j, k).

Other properties for Lm,r(n, k) were established which include its horizontal
generating function

(6) 〈x+ 2r|m〉n =

n∑
k=0

Lm,r(n, k)(x|m)k,

where

〈x+ 2r|m〉n =

{
(x+ 2r) · · · (x+ 2r + (n− 1)m), n ≥ 1,

0, n = 0,

and the triangular recurrence relation

(7) Lm,r(n, k) = Lm,r(n− 1, k − 1) + (2r + (n+ k − 1)m)Lm,r(n− 1, k),

with Lm,r(n, n) = 1 for n ≥ 0 and Lm,r(n, n) = 0 for n < k, or n, k < 0. We
can use (7) to generate the first values of Lm,r(n, k).

Qi [10] established a new way of computing Bell numbers by applying the
nth derivative of the exponential function e±1/t

dn

dtn
e±1/t = (−1)ne±1/t

n∑
k=0

(±1)kL(n, k)
1

tn+k
,

to the famous Faá di Bruno formula [4]

dn

dtn
f ◦ h(t) =

n∑
k=0

f (k)(h(t))Bn,k(h′(t), h′′(t), . . . , h(n−k+1)(t)),

where Bn,k(x1, x2, . . . , xn−k+1) is the Bell polynomial of the second kind with
n− k + 1 variables defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n,li∈N∑n
i=0 ili=n∑n
i=0 li=k

n!∏n−k+1
i=1 li!

n−k+1∏
i=1

(
xi
i!

)li
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such that Bk(1, 1, . . . , 1) = S(n, k). The said explicit formula which we refer
as the Qi Formula for the Bell numbers is given by

(8) Bn =

n∑
k=0

(−1)n−k


k∑
j=0

L(k, j)

S(n, k).

However, particularly interesting is the second proof provided in the same paper
which utilized already existing fundamental properties of the Lah numbers and
the Stirling numbers such as the well-known identity for the Lah numbers [4]

(−1)nL(n, k) =

n∑
j=k

(−1)js(n, j)S(j, k),

and the inverse relation of the Stirling numbers

(9) fn =

n∑
k=0

s(n, j)gj ⇐⇒ gn =

n∑
k=0

S(n, j)fj .

By letting fn = (−1)nL(n, k) and gj = (−1)jS(j, k), (9) yields an expression
for the Stirling numbers of the second kind, which is given by

S(n, k) = (−1)n
n∑
j=0

S(n, j)(−1)jL(j, k).

Summing up both sides over k gives (8). Moreover, the r-Dowling numbers
Dm,r(n), which are defined in [3] as the sum of the r-Whitney numbers of the
second kind

Dm,r(n) =

n∑
k=0

Wm,r(n, k),

generalize the Bell-type numbers. A comprehensive study of r-Dowling num-
bers has been done by Gyimesi and Nyul in [7].

In the case when m = 1 and r = 0, the r-Whitney numbers, the r-Dowling
numbers, and the r-Whitney Lah numbers reduce to the Stirling numbers, the
Bell numbers, and the Lah numbers, respectively.

Corcino et al. [5] obtained an explicit formula parallel to (8) expressing r-
Dowling numbers in terms of r-Whitney Lah numbers and r-Whitney numbers
of the second kind, which is discussed in Section 6. From this result, it is
interesting to establish a corresponding q-analogue of the Qi formula for r-
Dowling numbers.

2. The r-Whitney numbers

Mezo [9] introduced the r-Whitney numbers as a consequence for deriving
a new formula for the Bernoulli polynomials. As a further study, Cheon and
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Jung [3] defined the (signless) r-Whitney numbers of the first kind wm,r(n, k)
and the second kind Wm,r(n, k) as coefficients of following relations

mn(x)n =

n∑
k=0

(−1)n−kwm,r(n, k)(mx+ r)k,(10)

(mx+ r)n =

n∑
k=0

mkWm,r(n, k)(x)k,(11)

where (x)n is the well-known Pochammer symbol for the falling factorial defined
by

(x)n =

{
x(x− 1) · · · (x− n+ 1), n ≥ 1,

1, n = 0.

These numbers generalize the Whitney numbers of the first kind and the second
kind which were developed by Benoumhani [1].

The Stirling numbers satisfy the following orthogonality relations

(12)
n∑

k=m

S(n, k)s(k,m) =

n∑
k=m

s(n, k)S(k,m) = δnm.

By applying (11) into (10), Cheon and Jung [3] showed that the r-Whitney
numbers satisfy the orthogonality relation

(13)

n∑
k=0

(−1)n−kwm,r(n, k)Wm,r(k, p) = δnp,

where δnp denotes the Kronecker delta function.
By making use of the orthogonality relation in (13), one may easily establish

the following inverse relations between r-Whitney numbers of the first kind and
the second kind.

Theorem 2.1. The r-Whitney numbers satisfy the following inverse relations:

i. fn =

n∑
k=0

(−1)n−kwm,r(n, k)gk ⇐⇒ gn =

n∑
k=0

Wm,r(n, k)fk;(14)

ii. fk =

∞∑
n=k

(−1)n−kwm,r(n, k)gn ⇐⇒ gk =

∞∑
n=k

Wm,r(n, k)fn.(15)

Other properties of the r-Whitney numbers established in [3] include the
triangular recurrence relations

wm,r(n, k) = wm,r(n− 1, k − 1) + (r + (n− 1)m)wm,r(n− 1, k),(16)

Wm,r(n, k) = Wm,r(n− 1, k − 1) + (r + km)Wm,r(n− 1, k),(17)

with wm,r(n, n) = Wm,r(n, n) = 1 for n ≥ 0 and wm,r(n, k) = Wm,r(n, k) = 0
for n < k, or n, k < 0. Equations (16) and (17) can be used to generate the



A q-ANALOGUE OF QI FORMULA FOR r-DOWLING NUMBERS 25

first values of wm,r(n, k) and Wm,r(n, k). The r-Whitney numbers also satisfy
the following exponential generating functions∑

n≥k

(−1)n−kwm,r(n, k)
zn

n!
= (1 +mz)−

r
m

lnk(1 +mz)

mkk!
,(18)

∑
n≥k

Wm,r(n, k)
zn

n!
=
erz

k!

(
emz − 1

m

)k
.(19)

Using the inverse relation (15), the generating functions (18) and (19) can be
transformed, respectively, into the following identities

∞∑
n=k

Wm,r(n, k)(1 +mz)−
r
m

lnn(1 +mz)

mnn!

k!

zk
= 1,(20)

∞∑
n=k

(−1)n−kwm,r(n, k)
erz

n!

(
emz − 1

m

)n
k!

zk
= 1.(21)

Recently, Gyimesi and Nyul [8] gave new combinatorial interpretation for r-
Whitney numbers as well as for r-Whitney-Lah numbers

3. A q-analogue of r-Whitney numbers

A given polynomial ak(q) is said to be a q-analogue of an integer ak if

lim
q→1

ak(q) = ak.

An example is the q-analogue [x]q of an integer x

[x]q =
1− qx

1− q
= 1 + q + q2 + · · ·+ qx−1,

which is a polynomial in q with degree x− 1.
Corcino and Montero [6] noted that the r-Whitney numbers of the second

kind are exactly the same numbers with the Rucinski-Voigt numbers, intro-
duced by Rucinski and Voigt in [12], and defined a q-analogue of these numbers,
denoted by σ[n, k]β,rq , in a form of triangular recurrence relation as follows

(22) σ[n, k]β,rq = σ[n− 1, k − 1]β,rq +
(
[kβ]q + [r]q

)
σ[n− 1, k]β,rq ,

with σ[n, 0]β,rq = [r]nq for n ≥ 0, σ[n, n]β,rq = 1 for n ≥ 0, and σ[n, k]β,rq = 0 for

n < k or n, k < 0. We shall consider σ[n, k]β,rq as a q-analogue of r-Whitney
numbers of the second kind Wm,r(n, k) with β = m. Equation (22) can be used
to compute the first values of σ[n, k]β,rq .

When q → 1,

[kβ]q + [r]q → kβ + r

and (22) gives back the recurrence relation (17) for Wm,r(n, k) with β = m. For
brevity, we use the term q, r-Whitney numbers of the second kind to refer to
σ[n, k]β,rq as a q-analogue of the r-Whitney numbers of the second kind. Other
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properties of σ[n, k]β,rq included in the same paper are its horizontal generating
function

(23) (t+ [r]q)
n =

n∑
k=0

σ[n, k]β,rq (t|[β]q)k,

where

(24) (t|[β]q)k =


k−1∏
i=0

(t− [iβ]q), n ≥ 1,

1, n = 0,

and exponential generating function

(25)
∑
n≥0

σ[n, k]β,rq
tn

n!
=

[
∆k
qβ

(
e([xβ]q+[r]q)t(
[kβ]q|[β]q

)
k

)]
x=0

,

where (
[kβ]q|[β]q

)
k

= qβ(k2)[kβ]q[(k − 1)β]q · · · [β]q = qβ(k2)[k]qβ ![β]kq .

Moreover, the q, r-Whitney numbers of the second kind were proven to satisfy
the identity

(26) σ[n, k]β,rq =

n∑
j=k

(
n

j

)
q(n−j)r2 [r1]n−jq σ[j, k]β,r2q ,

which we can use to obtain an equivalent recurrence relation for the q, r-Dowling
numbers to be introduced in the next section.

Following the same approach used by Corcino and Montero to define a q-
analogue of r-Whitney numbers of the second kind which was originally intro-
duced by Carlitz [2] to define the q-Stirling numbers of the second kind, we
also define a q-analogue of r-Whitney numbers of the first kind in a form of a
triangular recurrence relation as follows.

Definition 3.1. For non-negative integers n and k and real numbers β and r,
a q-analogue φβ,r[n, k]q of wβ,r(n, k) is defined by

(27) φβ,r[n, k]q = φβ,r[n− 1, k − 1]q + ([r]q + [(n− 1)β]q)φβ,r[n− 1, k]q,

where φβ,r[0, 0]q = 1 and φβ,r[n, k]q = 0 for n < k and n, k < 0. For brevity,
the term q, r-Whitney numbers of the first kind is used to refer to φβ,r[n, k]q.

Note that when q → 1,

[r]q + [(n− 1)β]q → r + (n− 1)β.

Hence, the numbers φβ,r[n, k]q maybe considered as a q-analogue of wβ,r(n, k).
Moreover, the recurrence relation in (27) will give back the recurrence relation
in (16) with β = m.

Thus, by Definition 3.1,

φβ,r[n, n]q = 1, n ≥ 0;(28)
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φβ,r[n, 0]q =

n−1∏
i=0

([r]q + [iβ]q) , n ≥ 1.(29)

The first few values of φβ,r[n, k]q can be generated using (27), (28), and (29).
Now, note that by replacing t with t− [r]q, (24) can be rewritten as

(30) (t− [r]q|[β]q)n =


n−1∏
i=0

(t− [r]q − [iβ]q), n ≥ 1,

1, n = 0.

Using (30), we can now introduce the theorem below, which is analogous to
(10). This is necessary to obtain the orthogonality and the inverse relations
of q, r-Whitney numbers and to establish a q-analogue of the r-Whitney Lah
numbers.

Theorem 3.2. For non-negative integers n and k and real numbers β and r,
the q, r-Whitney numbers of the first kind φβ,r[n, k]q satisfy the relation

(31)

n∑
k=0

(−1)n−kφβ,r[n, k]qt
k = (t− [r]q|[β]q)n,

where

(t− [r]q|[β]q)n =


n−1∏
i=0

(t− [r]q − [iβ]q), n ≥ 1,

1, n = 0.

Proof. (By induction on n) Note that (31) is true for n = 0. Assume that (31)
is true for n > 0. We want to show that it also holds for n+ 1. By (27),

φβ,r[n+ 1, k]q = φβ,r[n, k − 1]q + ([r]q + [nβ]q)φβ,r[n, k]q.

Note that φβ,r[n, k]q = 0 for n < k, then

n+1∑
k=0

(−1)n+1−kφβ,r[n+ 1, k]qt
k

=

n+1∑
k=0

(−1)n+1−kφβ,r[n, k − 1]qt
k +

n+1∑
k=0

(−1)n+1−k ([r]q + [nβ]q)φβ,r[n, k]qt
k

=

n∑
k=0

(−1)n−kφβ,r[n, k]qt
k+1 −

n∑
k=0

(−1)n−k ([r]q + [nβ]q)φβ,r[n, k]qt
k

= (t− [r]q − [nβ]q)

n∑
k=0

(−1)n−kφβ,r[n, k]qt
k

= (t− [r]q − [nβ]q)(t− [r]q|[β]q)n = (t− [r]q|[β]q)n+1. �

Now, we are ready to establish the orthogonality and the inverse relations
of the q, r-Whitney numbers of the first kind φβ,r[n, k]q and the second kind
σ[n, k]β,rq parallel to (13), (14), and (15).
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Theorem 3.3. For non-negative integers n and k and real numbers β and
r, the q, r-Whitney numbers of the first kind φβ,r[n, k]q and the second kind
σ[n, k]β,rq satisfy the following orthogonality relations

n∑
k=p

(−1)n−kφβ,r[n, k]qσ[k, p]β,rq =

n∑
k=p

σ[n, k]β,rq (−1)k−pφβ,r[k, p]q

= δnp =

{
0, n 6= p,

1, n = p,
(32)

where δnp is the Kronecker delta.

Proof. Note that (23) and (31) can be rewritten as

(t+ [r]q)
k =

k∑
p=0

σ[k, p]β,rq (t|[β]q])p,(33)

(t|[β]q)n =

n∑
k=0

(−1)n−kφβ,r[n, k]q(t+ [r]q)
k,(34)

respectively. Substituting (33) into (34) gives

(t|[β]q)n =

n∑
k=0

(−1)n−kφβ,r[n, k]q

k∑
p=0

σ[k, p]β,rq (t|[β]q)p

=

n∑
p=0


n∑
k=p

(−1)n−kφβ,r[n, k]qσ[k, p]β,rq

 (t|[β]q)p.

Hence,
n∑
k=p

(−1)n−kφβ,r[n, k]qσ[k, p]β,rq =

{
0, n 6= p,

1, n = p.

Similarly, by replacing t with t+ [r]q, (31) can be rewritten as

(t|[β]q)k =

k∑
p=0

(−1)k−pφβ,r[k, p]q(t+ [r]q)
p.

Substitute this to

(t+ [r]q)
n =

n∑
k=0

σ[n, k]β,rq (t|[β]q)k,

it follows that

(t+ [r]q)
n =

n∑
k=0

σ[n, k]β,rq

k∑
p=0

(−1)k−pφβ,r[k, p]q(t+ [r]q)
p
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=

n∑
p=0


n∑
k=p

σ[n, k]β,rq (−1)k−pφβ,r[k, p]q

 (t+ [r]q)
p.

Therefore,
n∑
k=p

σ[n, k]β,rq (−1)k−pφβ,r[k, p]q = δnp =

{
0, n 6= p,

1, n = p. �

Consequently using the orthogonality relation (3.3), we can easily derive the
following inverse relations of q, r-Whitney numbers.

Theorem 3.4. For non-negative integers n and k and real numbers β and
r, the q, r-Whitney numbers of the first kind φβ,r[n, k]q and the second kind
σ[n, k]β,rq satisfy the following inverse relations

i. fn =

n∑
k=0

(−1)n−kφβ,r[n, k]qgk ⇐⇒ gn =

n∑
k=0

σ[n, k]β,rq fk,(35)

ii. fk =

∞∑
n=k

(−1)n−kφβ,r[n, k]qgn ⇐⇒ gk =
∞∑
n=k

σ[n, k]β,rq fn.(36)

By applying the inverse relation (36), the generating function (25) can be
transformed into the following identity

(37)

∞∑
n=0

(−1)n−kφβ,r[n, k]q

[
∆n
qβ

(
e([xβ]q+[r]q)t

([nβ]q|[β]q)n

)]
x=0

k!

tk
= 1.

Equation (37) can be considered as an identity for the q, r-Whitney numbers
of the first kind.

4. A q-analogue of r-Whitney Lah numbers

Cheon and Jung [3] defined the r-Whitney Lah numbers Lm,r(n, k) in terms
of the r-Whitney numbers of the first kind wm,r(n, k) and the second kind
Wm,r(n, k)

(38) Lm,r(n, k) =

n∑
j=k

wm,r(n, j)Wm,r(j, k),

which generalizes the identity for the Lah numbers in terms of the Stirling
numbers of the first kind s(n, k) and the second kind S(n, k)

(−1)nL(n, k) =

n∑
j=k

(−1)js(n, j)S(j, k).

Ramirez and Shattuck established a p, q-analogue of r-Whitney Lah numbers
in [11], which is a p, q-generalization of the r-Whitney Lah numbers defined by
Cheon and Jung. Parallel to (38), a q-analogue of the r-Whitney Lah numbers
is defined as follows.
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Definition 4.1. For non-negative integers n and k and real numbers β and r,
a q-analogue Lβ,r[n, k]q of Lβ,r(n, k) is defined by

(39) Lβ,r[n, k]q =

n∑
j=k

φβ,r[n, j]qσ[j, k]β,rq .

For brevity, the term q, r-Whitney Lah numbers is used to refer to Lβ,r[n, k]q.

Note that when q → 1,

φβ,r[n, k]q → wβ,r(n, k) and σ[n, k]β,rq →Wβ,r(n, k).

Furthermore, (39) reduces to

Lm,r(n, k) =

n∑
j=k

wm,r(n, j)Wm,r(j, k)

as q → 1. Hence, Lβ,r[n, k]q reduces to Lm,r(n, k) with β = m.
Recall that the q, r-Whitney numbers of the first kind φβ,r[n, k]q and the

second kind σ[n, k]β,rq are connection constants in the relations

(t− [r]q|[β]q)n =

n∑
k=0

(−1)n−kφβ,r[n, k]qt
k,(40)

(t+ [r]q)
n =

n∑
k=0

σ[n, k]β,rq (t|[β]q)k.(41)

The following theorem contains an equivalent horizontal generating function
which is needed to obtain the recurrence relation of Lβ,r[n, k]q.

Theorem 4.2. The q, r-Whitney Lah numbers Lβ,r[n, k]q are connection con-
stants in the identity

(42)
〈
t+ 2[r]q|[β]q

〉
n

=

n∑
k=0

Lβ,r[n, k]q
(
t|[β]q

)
k
,

where

(43)
〈
t+ 2[r]q|[β]q

〉
n

=


n−1∏
i=0

(t+ 2[r]q + [iβ]q), n > 0,

1, n = 0.

Proof. Replacing t with −(t+ [r]q), (40) gives(
− (t+ [r]q)− [r]q|[β]q

)
n

=
n∑
j=0

(−1)n−jφβ,r[n, j]q(−t− [r]q)
j ,

(
− t− 2[r]q|[β]q

)
n

=

n∑
j=0

(−1)nφβ,r[n, j]q(t+ [r]q)
j .(44)
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Note that the left-hand side of (44) can be expanded as

(
− t− 2[r]q|[β]q

)
n

=

n−1∏
i=0

(−t− 2[r]q − [iβ]q)

= (−1)n
〈
t+ 2[r]q|[β]q

〉
n
.(45)

Combining (44) and (45) gives

(46)
〈
t+ 2[r]q|[β]q

〉
n

=

n∑
j=0

φβ,r[n, j]q(t+ [r]q)
j .

Now (41) can be rewritten as

(t+ [r]q)
j =

j∑
k=0

σ[j, k]β,rq
(
t|[β]q

)
k
.

Applying this to (46) results to

〈
t+ 2[r]q|[β]q

〉
n

=

n∑
j=0

φβ,r[n, j]q

j∑
k=0

σ[j, k]β,rq
(
t|[β]q

)
k

=

n∑
k=0


n∑
j=k

φβ,r[n, j]qσ[j, k]β,rq

(t|[β]q
)
k

=

n∑
k=0

Lβ,r[n, k]q
(
t|[β]q

)
k
.

�

To generate the first values of Lβ,r[n, k]q, the following recurrence relation
is established using the horizontal generating function in the previous theorem.

Theorem 4.3. The q, r-Whitney Lah numbers Lβ,r[n, k]q satisfy the recurrence
relation

Lβ,r[n, k]q = Lβ,r[n− 1, k − 1]q

+ (2[r]q + [kβ]q + [(n− 1)β]q)Lβ,r[n− 1, k]q,(47)

with Lβ,r[0, 0]q = 1 and Lβ,r[n, k]q = 0 for n < k or n, k < 0.

Proof. By Theorem 4.2, we have

n∑
k=0

Lβ,r[n, k]q
(
t|[β]q

)
k

=
〈
t+ 2[r]q|[β]q

〉
n
.

Evaluate the right-hand side of the equation,

n∑
k=0

Lβ,r[n, k]q
(
t|[β]q

)
k
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=
(
t+ 2[r]q + [(n− 1)β]q

) n−1∑
k=0

Lβ,r[n− 1, k]q
(
t|[β]q

)
k

=
(
t− [kβ]q + [kβ]q + 2[r]q + [(n− 1)β]q

) n−1∑
k=0

Lβ,r[n− 1, k]q
(
t|[β]q

)
k

=

n−1∑
k=0

(
t− [kβ]q

)
Lβ,r[n− 1, k]q

(
t|[β]q

)
k

+

n−1∑
k=0

(
2[r]q + [kβ]q + [(n− 1)β]q

)
Lβ,r[n− 1, k]q

(
t|[β]q

)
k

=

n∑
k=0

Lβ,r[n− 1, k − 1]q
(
t|[β]q

)
k

+

n∑
k=0

(
2[r]q + [kβ]q + [(n− 1)β]q

)
Lβ,r[n− 1, k]q

(
t|[β]q

)
k

=
n∑
k=0

{
Lβ,r[n−1, k−1]q+

(
2[r]q+[kβ]q+[(n−1)β]q

)
Lβ,r[n−1, k]q

} (
t|[β]q

)
k
.

By comparing the coefficients of
(
t|[β]q

)
k
, we prove the theorem. �

As q → 1, (47) reduces to

Lβ,r(n, k) = Lβ,r(n− 1, k − 1) + (2r + (k + n− 1)β)Lβ,r(n− 1, k),

which is equivalent to

Lm,r(n, k) = Lm,r(n− 1, k − 1) + (2r + (k + n− 1)m)Lm,r(n− 1, k),

with β = m.
By Theorem 4.3, we can deduce the following

Lβ,r[n, n]q = 1, n ≥ 0,(48)

Lβ,r[n, 0]q =

n−1∏
i=0

(2[r]q + [iβ]q), n ≥ 1.(49)

The following are the first few values of Lβ,r[n, k]q with β = r = 2 generated
using (47), (48), and (49):

Lβ,r[0, 0]q = 1,

Lβ,r[1, 0]q = 2[2]q = 2q + 2,

Lβ,r[1, 1]q = 1,

Lβ,r[2, 0]q = (2[2]q + [2]q)(2[2]q) = (3q + 3)(2q + 2) = 6q2 + 12q + 6,

Lβ,r[2, 1]q = Lβ,r[1, 0]q + (2[2]q + [2]q + [2]q)Lβ,r[1, 1]q,

= 2q + 2 + (4q + 4)(1) = 6q + 6,
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Lβ,r[2, 2]q = 1.

Hence, Lβ,r[n, k]q is a polynomial in q.

5. A q-analogue of r-Dowling numbers

The r-Dowling polynomials introduced by Cheon and Jung [3] give the r-
Dowling numbers when x = 1. Specifically, the r-Dowling numbers Dm,r(n)
are given as the sum of the r-Whitney numbers of the second kind

(50) Dm,r(n) =

n∑
k=0

Wm,r(n, k).

Parallel to (50), a q-analogue of r-Dowling numbers is defined as follows.

Definition 5.1. For non-negative integers n and k and real numbers β and r,
a q-analogue of r-Dowling numbers, denoted by Dβ,r[n], is defined by

(51) Dβ,r[n]q =

n∑
k=0

σ[n, k]β,rq .

For brevity, we use the term q, r-Dowling numbers to refer to Dβ,r[n]q.

Note that when q → 1, σ[n, k]β,rq →Wβ,r(n, k). Consequently,

Dβ,r[n]q → Dβ,r(n).

Hence the numbers Dβ,r[n]q may be considered as a q-analogue of Dm,r(n)
with β = m.

By (51), the values of Dβ,r[n]q can be taken from the sum of σ[n, k]β,rq .

Using (22), the following are the first few values of σ[n, k]β,rq with β = r = 2:

σ[0, 0]2,2q = 1,

σ[1, 0]2,2q = [2]q = q + 1,

σ[1, 1]2,2q = 1,

σ[2, 0]2,2q = [2]2q = (q + 1)2 = q2 + 2q + 1,

σ[2, 1]2,2q = σ[1, 0]2,2q + ([2]q + [2]q)σ[1, 1]2,2q

= q + 1 + (2q + 2)(1) = 3q + 3,

σ[2, 2]2,2q = 1.

Therefore,

D2,2[0]q = 1,

D2,2[1]q = q + 2,

D2,2[2]q = q2 + 5q + 5.

Moreover, σ[n, k]β,rq and Dβ,r[n]q are shown to be polynomials in q.
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The following theorem contains the exponential generating function of q, r-
Dowling numbers Dβ,r[n]q which is analogous to (2).

Theorem 5.2. For non-negative integers n and k and real numbers β and r,
the q, r-Dowling numbers Dβ,r[n]q satisfy the exponential generating function

(52)

∞∑
n=0

Dβ,r[n]q
tn

n!
=

∞∑
k=0

{
∆k
qβ

(
e([xβ]q+[r]q)t(
[kβ]q|[β]q

)
k

)}
x=0

.

Proof. Multiplying both sides of (51) with tn

n! and summing over n gives

∞∑
n=0

Dβ,r[n]q
tn

n!
=

∞∑
n=0

{ n∑
k=0

σ[n, k]β,rq

}
tn

n!

=

∞∑
k=0

{ ∞∑
n=0

σ[n, k]β,rq
tn

n!

}
.

Applying the exponential generating function (25) of q, r-Whitney numbers of
the second kind σ[n, k]β,rq yields

∞∑
n=0

Dβ,r[n]q
tn

n!
=

∞∑
k=0

{
∆k
qβ

(
e([xβ]q+[r]q)t(
[kβ]q|[β]q

)
k

)}
x=0

.
�

The following theorem contains certain recurrence relation for Dβ,r[n]q with
respect to r.

Theorem 5.3. The q, r-Dowling numbers Dβ,r[n]q satisfy the following rela-
tion:

(53) Dβ,r[n]q =

n∑
j=0

(
n

j

)
q(n−j)(r−1)Dβ,r−1[j]q.

Proof. By making use of (26)

σ[n, k]β,rq =

n∑
j=k

(
n

j

)
q(n−j)r2 [r1]n−jq σ[j, k]β,r2q ,

with r1 = 1 and r2 = r − 1, then

σ[n, k]β,rq =

n∑
j=k

(
n

j

)
q(n−j)(r−1)[1]n−jq σ[j, k]β,r−1q .

Summing up both sides of the equation over k such that 0 ≤ k ≤ n,
n∑
k=0

σ[n, k]β,rq =

n∑
k=0

n∑
j=k

(
n

j

)
q(n−j)(r−1)σ[j, k]β,r−1q

=

n∑
j=0

(
n

j

)
q(n−j)(r−1)

{ j∑
k=0

σ[j, k]β,r−1q

}
.
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Hence,

Dβ,r[n]q =

n∑
j=0

(
n

j

)
q(n−j)(r−1)Dβ,r−1[j]q.

�

The next corollary is a direct consequence of Theorem 5.3.

Corollary 5.4. The q, r-Dowling numbers satisfy the following relation:

(54) Dβ,r−1[n]q =

n∑
j=0

(−1)n−j
(
n

j

)
q(n−j)(r−1)Dβ,r[j]q.

Proof. Equation (53) can be rewritten as

(55) q−n(r−1)Dβ,r[n]q =

n∑
j=0

(
n

j

)
q(−j)(r−1)Dβ,r−1[j]q.

Applying the binomial inversion formula

fn =

n∑
j=0

(
n

j

)
gj ⇐⇒ gn =

n∑
j=0

(−1)n−j
(
n

j

)
fj ,

with
fn = q−n(r−1)Dβ,r[n]q

and
gj = q(−j)(r−1)Dβ,r−1[j]q,

Equation (55) yields

q(−n)(r−1)Dβ,r−1[n]q =

n∑
j=0

(−1)n−j
(
n

j

)
q−j(r−1)Dβ,r[j]q.

Hence,

(56) Dβ,r−1[n]q =

n∑
j=0

(−1)n−j
(
n

j

)
q(n−j)(r−1)Dβ,r[j]q.

�

6. Explicit formula for q, r-Dowling numbers

Recently, Corcino et al. [5] obtained a new explicit formula for r-Dowling
numbers which is expressed in terms of r-Whitney numbers of the second kind
and the r-Whitney Lah numbers. This formula is stated in the following theo-
rem.

Theorem 6.1 ([5]). The explicit formula for r-Dowling numbers is given by

(57) Dm,r(n) =

n∑
j=0

(−1)n−j

{
j∑

k=0

Lm,r(j, k)

}
Wm,r(n, j).

To verify this formula for a specific value of n,m, and r, we have the following
table of values:
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Table 1. A triangular array of values for Wm,r(n, k) with
m = r = 2

D2,2(n) n/k 0 1 2 3 4
1 0 1
3 1 2 1

11 2 4 6 1
49 3 8 28 12 1

257 4 16 120 100 20 1

Table 2. A triangular array of values for Lm,r(n, k) with m =
r = 2

n∑
k=0

Lm,r(n, k) n/k 0 1 2 3 4

1 0 1
5 1 4 1

37 2 24 12 1
361 3 192 144 24 1

4361 4 1920 1920 480 40 1

Using the explicit formula in Theorem 6.1, we obtain

D2,2(n = 2) =

2∑
j=0

(−1)2−j

{
j∑

k=0

L2,2(j, k)

}
W2,2(2, j)

= (1)(4)− (5)(6) + (37)(1)

= 11,

D2,2(n = 3) =

3∑
j=0

(−1)3−j

{
j∑

k=0

L2,2(j, k)

}
W2,2(3, j)

= −(1)(8) + (5)(28)− (37)(12) + (361)(1)

= 49,

D2,2(n = 4) =

4∑
j=0

(−1)4−j

{
j∑

k=0

L2,2(j, k)

}
W2,2(4, j)

= (1)(16)− (5)(120) + (37)(100)− (361)(20) + (4361)(1)

= 257.

Note that the values obtained for D2,2(2), D2,2(3), and D2,2(4) are the exact
values that appeared in Table 2.
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Remark 6.2. When m = 1, and r = 0, (57) reduces to

D1,0(n) =

n∑
j=0

(−1)n−j

{
j∑

k=0

L1,0(j, k)

}
W1,0(n, j),

which is equivalent to the Qi formula for Bell numbers

Bn =

n∑
k=0

(−1)n−k


k∑
j=0

L(k, j)

S(n, k),

with

Bn = D1,0(n), L(j, k) = L1,0(j, k) and S(n, j) = W1,0(n, j).

Remark 6.3. The r-Dowling numbers Dβ,r[n]q equal to the sum of the entries
of the ith row of the product of two matrices

(58)
[
(−1)i−jWm,r(i, j)

]
n×n [Lm,r(i, j)]n×n ,

whose entries are respectively the r-Whitney numbers of the second kind and
the r-Whitney Lah numbers.

The following theorem contains the desired explicit formula for q, r-Dowling
numbers, which is a q-analogue of the explicit formula in Theorem 6.1.

Theorem 6.4. The explicit formula for q, r-Dowling numbers is given by

(59) Dβ,r[n]q =

n∑
j=0

(−1)n−j

{
j∑

k=0

Lβ,r[j, k]q

}
σ[n, j]β,rq .

Proof. Equation (39) can be rewritten as

(60) (−1)nLβ,r[n, k]q =

n∑
j=0

(−1)n−jφβ,r[n, j]q(−1)jσ[j, k]β,rq .

Applying the inverse relation in (36)

(61) fn =

n∑
j=0

(−1)n−jφβ,r[n, j]qgj ⇐⇒ gn =

n∑
j=0

σ[n, j]β,rq fj ,

with

fn = (−1)nLβ,r[n, k]q and gj = (−1)jσ[j, k]β,rq ,

implies that equation (60) is equivalent to

(−1)nσ[n, k]β,rq =

n∑
j=0

σ[n, j]β,rq (−1)jLβ,r[j, k]q,

σ[n, k]β,rq =

n∑
j=0

(−1)n−jσ[n, j]β,rq Lβ,r[j, k]q.
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Taking the sum on both sides over k such that 0 ≤ k ≤ n yields
n∑
k=0

σ[n, k]β,rq =

n∑
k=0

n∑
j=0

(−1)n−jσ[n, j]β,rq Lβ,r[j, k]q

=

n∑
j=0

(−1)n−j
n∑
k=0

Lβ,r[j, k]qσ[n, j]β,rq .

Since

Dβ,r[n]q =

n∑
k=0

σ[n, k]β,rq ,

hence

Dβ,r[n]q =

n∑
j=0

(−1)n−j

{
j∑

k=0

Lβ,r[j, k]q

}
σ[n, j]β,rq ,

which is the desired result. �

Table 3. This table contains the first values of σ[n, k]β,rq and
Dβ,r[n]q with β = r = 2

D2,2[n]q n/k 0 1
1 0 1 0

q + 2 1 q + 1 1
q2 + 5q + 5 2 q2 + 2q + 1 3q + 3

2q3 + 11q2 + 22q + 14 3 q3 + 3q2 + 3q + 1 7q2 + 14q + 7
q6 + 3q5 + 10q4 + 35q3 4 q4 + 4q3 + 6q2 + 4q + 1 15q3 + 45q2 + 45q + 15

+77q2 + 90q + 41

Table 4. This table contains the first values of Lβ,r(n, k) with
β = r = 2

n∑
k=0

L2,2[n, k]q n/k 0

1 0 1
2q + 3 1 2q + 2

6q2 + 18q + 13 2 6q2 + 12q + 6
6q5 + 24q4 + 50q3 + 98q2 + 124q + 59 3 6q5 + 18q4 + 36q3 + 60q2 + 54q + 18

6q10 + 30q9 + 80q8 + 178q7 + 316q6 + 438q5 + 560q4 4 6q10 + 24q9 + 60q8 + 120q7 + 186q6 + 240q5 + 294q4

+750q3 + 942q2 + 784q + 277 +360q3 + 360q2 + 216q + 54

n/k 1 2 3 4
0 0 0 0 0
1 1 0 0 0
2 6q + 6 1 0 0
3 6q4 + 12q3 + 36q2 + 60q + 30 2q3 + 2q2 + 10q + 10 1 0
4 6q9 + 18q8 + 54q7 + 114q6 + 168q5 + 216q4 2q8 + 4q7 + 16q6 + 28q5 + 48q4 + 68q3 2q5 + 2q4 + 4q3 + 4q2 + 14q + 14 1

+318q3 + 474q2 + 414q + 138 +104q2 + 140q + 70
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Using the explicit formula in Theorem 6.4, we get

D2,2[n = 1]q =

1∑
j=0

(−1)1−j

{
j∑

k=0

L2,2[j, k]q

}
σ[1, j]2,2q

= − (q + 1) + 2q + 3

= q + 2,

D2,2[n = 2]q =

2∑
j=0

(−1)2−j

{
j∑

k=0

L2,2[j, k]q

}
σ[2, j]2,2q

= (q2 + 2q + 1)− (2q + 3)(3q + 3) + (6q2 + 18q + 13)

= q2 + 5q + 5,

D2,2[n = 3]q =

3∑
j=0

(−1)3−j

{
j∑

k=0

L2,2[j, k]q

}
σ[3, j]2,2q

= − (q3 + 3q2 + 3q + 1) + (2q + 3)(7q2 + 14q + 7)

− (6q2 + 18q + 13)(q3 + q2 + 5q + 5)

+ 6q5 + 24q4 + 50q3 + 98q2 + 124q + 59

= 2q3 + 11q2 + 22q + 14,

D2,2[n = 4]q =

4∑
j=0

(−1)4−j

{
j∑

k=0

L2,2[j, k]q

}
σ[4, j]2,2q

= (q4 + 4q3 + 6q2 + 4q + 1)− (2q + 3)(15q3 + 45q2 + 45q + 15)

+ (6q2 + 18q + 13)(q6 + 2q5 + 8q4 + 14q3 + 24q2 + 34q + 17)

− (6q5 + 24q4 + 50q3 + 98q2 + 124q + 59)(q5 + q4 + 2q3 + 2q2

+ 7q + 7) + 6q10 + 30q9 + 80q8 + 178q7 + 316q6 + 438q5

+ 560q4 + 750q3 + 942q2 + 784q + 277

= q6 + 3q5 + 10q4 + 35q3 + 77q2 + 90q + 41.

The values obtained for D2,2[1]q, D2,2[2]q, D2,2[3]q, and D2,2[4]q are the exact
values that appeared in Table 3.

Remark 6.5. Note that as q → 1, (59) reduces to

Dβ,r(n) =

n∑
j=0

(−1)n−j

{
j∑

k=0

Lβ,r(j, k)

}
Wβ,r(n, k),

which is equivalent to the explicit formula for r-Dowling numbers

Dm,r(n) =

n∑
j=0

(−1)n−j

{
j∑

k=0

Lm,r(j, k)

}
Wm,r(n, j),
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with β = m.

Remark 6.6. The q, r-Dowling numbers Dβ,r[n]q equal to the sum of the entries
of the ith row of the product of two matrices

(62)
[
(−1)i−jσ[i, j]β,rq

]
n×n [Lβ,r[i, i]q]n×n ,

whose entries are respectively the q, r-Whitney numbers of the second kind and
the q, r-Whitney Lah numbers.

Remark 6.6 is equivalent to the following matrix relation

(63)
[
σ[i, j]β,rq

]
n×n =

[
(−1)i−jσ[i, j]β,rq

]
n×n [Lβ,r[i, i]q]n×n .

Now, the orthogonality relation in Theorem 3.3 implies the following matrix
relation

(64)
[
(−1)i−jσ[i, j]β,rq

]
n×n [φβ,r[i, j]q]n×n = In,

where In is the identity matrix of order n. That is,[
(−1)i−jσ[i, j]β,rq

]−1
n×n = [φβ,r[i, j]q]n×n ,

which implies

(65) [φβ,r[i, j]q]n×n
[
σ[i, j]β,rq

]
n×n = [Lβ,r[i, i]q]n×n .

The matrix equation (65) is equivalent to equation (39).
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