• Title/Summary/Keyword: Kinematics & Dynamics model

Search Result 90, Processing Time 0.026 seconds

A survey on human figure representation in computer graphics (인체 모델의 컴퓨터 형상화 방법)

  • 한치근;정의승
    • Journal of the Ergonomics Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.57-73
    • /
    • 1993
  • In this paper, methods of human figure representation in computer graphics are described. Many applications of the human figure representation are found in areas including industry, advertisement, and cartoon production and further research for the methods that show the human figure more realistically is ex- pected. Two analytic methods for human model, kinematics and dynamics, are ex- plained and the characteristics of the man-machine interface systems that include human figure representation are presented. Various techniques of the human figure representation based on kinematics or(and) dynamics are discussed and representation methods of human body segments such as hand, face, spine are introduced in this paper.

  • PDF

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Multibody Dynamics Approach

  • Kim, Joong-Kwan;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.152-161
    • /
    • 2013
  • This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables defined in a wing kinematics function. The aerodynamics from complex wing flapping motions is estimated by a blade element approach, including translational and rotational force coefficients derived from relevant experimental studies. Control characteristics of flight dynamics with respect to the changes of three angular degrees of freedom (stroke positional, feathering, and deviation angle) of the wing kinematics are investigated. Results show that the symmetric (asymmetric) wing kinematics change of each wing only affects the longitudinal (lateral) flight forces and moments, which implies that the longitudinal and lateral flight controls are decoupled. However, there are coupling effects within each plane of motion. In the longitudinal plane, pitch and forward/backward motion controls are coupled; in the lateral plane, roll and side-translation motion controls are coupled.

Development of a 3D graphic simulation tool for SCARA robot (스카라 로봇의 3차원 그래픽 시뮬레이션 툴 개발)

  • 이대영;최재원;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.724-727
    • /
    • 1997
  • In this paper, we developed a Windows 95 version Off-Line Programming System which can simulate a Robot model in 3D Graphic space. 4 axes SCARA Robot (especially FARA SM5)was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the OLP system in the Windows 95's GUI environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D Graphics.

  • PDF

Development of a 3D Graphic Simulator for Assembling Robot (조립용 로봇이 3차원 그래픽 시뮬레이터 개발)

  • 장영희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.227-232
    • /
    • 1998
  • We developed a Off-Line Graphic Simulator which can simulate a robot model in 3D graphics space in Windows 95 version. 4 axes SCARA robot was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the off-line program system in the Windows 95's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D graphics.

  • PDF

Development of a 3D Off-Line Graphic Simulator for Industrial Robot (산업용 로봇의 3차원 오프라인 그래픽 시뮬레이터 개발)

  • 이병국
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.565-570
    • /
    • 1999
  • In this paper, we developed a windows 95 version Off-Line Programming system which can simulate a Robot model in 3D Graphics space. 4axes SCARA Robot (especially FARA SM5) was adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the OLP system in the Windows 95's GUI environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by silicon Graphics, Inc. were utilized for 3D Graphics.

  • PDF

Model-based sliding mode tracking control of 6-6 Stewart platform manipulator

  • Lee, Chong-Won;Kim, Nag-In
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.772-775
    • /
    • 1997
  • A high speed tracking control for 6-6 Stewart platform manipulator is performed by employing the joint-axis sliding mode control based on dynamics. Because of the complex dynamics and kinematics of Stewart platform manipulator, two computer systems, consisting of a PC and a DSP, are adopted, so that real time tasks are run in synchronous and asynchronous modes. It is experimentally proven that the proposed control system leads to an easy to implement and effective control task, and it can achieve the high performance tracking control under the high speed and severe payload condition.

  • PDF

Robust Adaptive Fuzzy Backstepping Control for Trajectory Tracking of an Electrically Driven Nonholonomic Mobile Robot with Uncertainties (불확실성을 가지는 전기 구동 논홀로노믹 이동 로봇의 궤적 추종을 위한 강인 적응 퍼지 백스테핑 제어)

  • Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.902-911
    • /
    • 2012
  • This paper proposes a robust adaptive fuzzy backstepping control scheme for trajectory tracking of an electrically driven nonholonomic mobile robot with uncertainties and actuator dynamics. A complete model of an electrically driven nonholonomic mobile robot described in this work includes all models of the uncertain robot kinematics with a nonholonomic constraint, the uncertain robot body dynamics with uncertain frictions and unmodeled disturbances, and the uncertain actuator dynamics with disturbances. The proposed control scheme uses the backstepping control approach through a kinematic controller and a robust adaptive fuzzy velocity tracking controller. The presented control scheme has a voltage control input with an auxiliary current control input rather than a torque control input. It has two FBFNs(Fuzzy Basis Function Networks) to approximate two unknown nonlinear robot dynamic functions and a robust adaptive control input with the proposed adaptive laws to overcome the uncertainties such as parameter uncertainties and external disturbances. The proposed control scheme does not a priori require the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. It can also alleviate the chattering of the control input. Using the Lyapunov stability theory, the stability of the closed-loop robot control system is guaranteed. Simulation results show the validity and robustness of the proposed control scheme.

Design of the Estimator of Forward Kinematics Solution for a 6 DOF Motion Bed (6자유도 운동재현용 베드의 순기구학 추정기 설계)

  • 강지윤;김동환;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.483-487
    • /
    • 1996
  • We consider the estimation of the position and orientation of 6 DOF motion bed (Stewart platform) from the measured cylinder length. The solution of forward kinematics is not solved yet as a useful realtime application tool because of the complity of the equation with multiple solutiple solutions. Hence we suggest an algorithm for the estimation of forward kinematics solution using Luenberger observer withnonlinear error correction term. The Luenberger observer withlinear model shows that the estimation error does not go to zero in steadystate due to the linearization error of the dynamic model. Hence the linear observer is modified using nonlinear measurement error equation and we prove thd practical stability of the estimation error dynamics of the proposed observer using lyapunov function.

  • PDF

Comparison of simulated platform dynamics in steady/dynamic winds and irregular waves for OC4 semi-submersible 5MW wind-turbine against DeepCwind model-test results

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-21
    • /
    • 2016
  • The global performance of the 5 MW OC4 semisubmersible floating wind turbine in random waves with or without steady/dynamic winds is numerically simulated by using the turbine-floater-mooring fully coupled dynamic analysis program FAST-CHARM3D in time domain. The numerical simulations are based on the complete second-order diffraction/radiation potential formulations along with nonlinear viscous-drag force estimations at the body's instantaneous position. The sensitivity of hull motions and mooring dynamics with varying wave-kinematics extrapolation methods above MWL(mean-water level) and column drag coefficients is investigated. The effects of steady and dynamic winds are also illustrated. When dynamic wind is added to the irregular waves, it additionally introduces low-frequency wind loading and aerodynamic damping. The numerically simulated results for the 5 MW OC4 semisubmersible floating wind turbine by FAST-CHARM3D are also extensively compared with the DeepCWind model-test results by Technip/NREL/UMaine. Those numerical-simulation results have good correlation with experimental results for all the cases considered.

A Study on the Development of Vehicle Dynamic Model for Dynamic Characteristics Analysis of Chassis Parts (샤시부품 동특성 해석을 위한 전차량 해석모델 개발에 관한 연구)

  • Bae, Chul-Yong;Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Na, Byung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.958-966
    • /
    • 2007
  • This study presents full vehicle dynamics model for the dynamic characteristic analysis of chassis parts which are suspension and brake system. This vehicle dynamics model is appled to kinematics and quasi-static analysis for each chassis part. In order to develop the vehicle dynamics model, the parameters of each chassis element part which are bush, spring and damper are measured by experiment. Also the wheel forces and moments of 6 DOF are measured at each wheel center. These data are applied to input parameter for vehicle dynamics model. And the verification of the developed model is achieved to comparison with the experimental force data of spring, trailing arm and assist arm by using the load response by strain gauge. These experimental force data are acquired by road test at event surfaces of P/G which are belgian and chuck holes roads.