References
- Sane, S. P., and Dickinson, M. H., "The aerodynamic effects of wing rotation and a revised quasi-steady model for flapping flight", Journal of Experimental Biology, Vol. 205, No. 8, 2002, pp. 1087-1096.
- Keennon, M., Klingebiel, K., Won, H., and Andriukov, A., "Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle", Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, 2012, Article number: AIAA 2012-0588.
- Ristroph, L., Bergou, A., Guckenheimer, J., Wang, Z., and Cohen, I., "Paddling Mode of Forward Flight in Insects", Physical Review Letters, Vol. 106, No. 1, 2011, pp. 178103-1 - 178103-4. https://doi.org/10.1103/PhysRevLett.106.178103
- Walker, S. M., Thomas, A. L. R., and Taylor, G. K., "Deformable wing kinematics in free-flying hoverflies", Journal of the Royal Society Interface, Vol. 7, No. 42, 2010, pp. 131-142. https://doi.org/10.1098/rsif.2009.0120
- Cheng, B., Deng, X., and Hedrick, T., "The mechanics and control of pitching manoeuvres in a freely flying Hawkmoth (Manduca Sexta)", Journal of Experimental Biology, Vol. 214, No. 1, 2011, pp. 4092-4106. https://doi.org/10.1242/jeb.062760
- Zhang, Y., and Sun, M., "Control for small-speed lateral flight in a model insect", Bioinspiration and Biomimetics, Vol. 6, No. 3, 2011, pp. 036003-1 - 036003-9. https://doi.org/10.1088/1748-3182/6/3/036003
- Pérez-Arancibia, N. O., Ma, K. Y., Galloway, K. C., Greenberg, J. D., and Wood, R. J., "First controlled vertical flight of a biologically inspired microrobot", Bioinspiration and Biomimetics, Vol. 6, No. 3, 2011, pp. 036009-1 - 036009- 11. https://doi.org/10.1088/1748-3182/6/3/036009
- Paranjape, A., Dorothy, M. R., Chung, S.-J., and Lee, K. D., "A Flight Mechanics-Centric Review of Bird-Scale Flapping Flight", International Journal of Aeronautical and Space Sciences, Vol. 13, No. 3, 2012, pp. 267-281. https://doi.org/10.5139/IJASS.2012.13.3.267
- Orlowski, C. T. and Girard, A. R., "Modeling and Simulation of Nonlinear Dynamics of Flapping Wing Micro Air Vehicles", AIAA J., Vol. 49, No. 5, 2011, pp. 969-981 https://doi.org/10.2514/1.J050649
- Lee, J.-S., Kim, J.-K., Kim, D.-K., and Han, J.-H., "Longitudinal Flight Dynamics of Bioinspired Ornithopter Considering Fluid-Structure Interaction", Journal of Guidance, Control and Dynamics, Vol. 34, No. 3, 2011, pp. 667-677. https://doi.org/10.2514/1.53354
- Kim, J.-K., Lee, J.-S., and Han, J.-H., "Passive Longitudinal Stability in Ornithopter Flight", Journal of Guidance, Control and Dynamics, Vol. 35, No. 2, 2012, pp. 669-673. https://doi.org/10.2514/1.55209
- Jantzen, B., and Eisner, T., "Hindwings are unnecessary for flight but essential for execution of normal evasive flight in Lepidoptera", Proceedings of the National Academy of Sciences, Vol. 105, No. 43, 2008, pp. 16636-16640. https://doi.org/10.1073/pnas.0807223105
- Ellington, C. P., "The aerodynamics of hovering insect flight: II. Morphological parameters", Philos. Trans. R. Soc. B-Biol. Sci. Vol. 305, No. 1122, 1984, pp. 17-40. https://doi.org/10.1098/rstb.1984.0050
- O'Hara, R. P., and Palazotto, A. N., "The morphological characterization of the forewing of the Manduca sexta species for the application of biomimetic flapping wing micro air vehicles", Bioinspiration and Biomimetics, Vol. 7, No. 4, 2012, pp. 046011-1 - 046011-13. https://doi.org/10.1088/1748-3182/7/4/046011
- Truong, Q. T., Nguyen, Q. V., Truong, V. T., Park, H.-C., Byun, D.-Y., and Goo, N.-S., "A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system", Bioinspiration and Biomimetics, Vol. 6, No. 3, pp. 036008-1 - 036008-11.
- Doman, D. B., Oppenheimer, M. W., and Sigthorsson, D. O., "Wingbeat Shape Modulation for Flapping-Wing Micro-Air-Vehicle Control During Hover", Journal of Guidance, Control and Dynamics, Vol. 33, No. 3, 2010, pp.724-739. https://doi.org/10.2514/1.47146
- Usherwood, J. R., and Ellington, C. P., "The aerodynamics of revolving wings, I. Model Hawkmoth wings" , Journal of Experimental Biology, Vol. 205, No. 11,2001, pp. 1547-1564.
- Berman, G. J., and Wang, Z., "Energy-minimizing kinematics in hovering insect flight", Journal of Fluid Mechanics, Vol. 582, No. 1, 2007, pp. 153-168. https://doi.org/10.1017/S0022112007006209
- Sun, M., Wang, J., and Xiong, Y., "Dynamic flight stability of hovering insects", Acta Mech. Sin., Vol. 23, No. 3, 2007, pp. 231-246. https://doi.org/10.1007/s10409-007-0068-3
- Zhang, Y.-L., and Sun, M., "Dynamic flight stability of a hovering model insect: lateral motion", Acta Mech. Sin., Vol. 26, No. 2, 2010, pp. 175-190. https://doi.org/10.1007/s10409-009-0303-1
- Willmott, A. P., and Ellington, C. P., "The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight", Journal of Experimental Biology, Vol. 200, No. 21, 1997, pp. 2705-2722
Cited by
- A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmothManduca sexta vol.9, pp.1, 2014, https://doi.org/10.1088/1748-3182/9/1/016011
- Effect of body aerodynamics on the dynamic flight stability of the hawkmoth Manduca sexta vol.12, pp.1, 2016, https://doi.org/10.1088/1748-3190/12/1/016007
- Hovering and forward flight of the hawkmothManduca sexta: trim search and 6-DOF dynamic stability characterization vol.10, pp.5, 2015, https://doi.org/10.1088/1748-3190/10/5/056012
- An improved quasi-steady aerodynamic model for insect wings that considers movement of the center of pressure vol.10, pp.4, 2015, https://doi.org/10.1088/1748-3190/10/4/046014
- Role of Trailing-Edge Vortices on the Hawkmothlike Flapping Wing vol.52, pp.4, 2015, https://doi.org/10.2514/1.C032768