• Title/Summary/Keyword: KKM-map

Search Result 11, Processing Time 0.023 seconds

COLLECTIVE FIXED POINTS FOR GENERALIZED CONDENSING MAPS IN ABSTRACT CONVEX UNIFORM SPACES

  • Kim, Hoonjoo
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.93-104
    • /
    • 2021
  • In this paper, we present a fixed point theorem for a family of generalized condensing multimaps which have ranges of the Zima-Hadžić type in Hausdorff KKM uniform spaces. It extends Himmelberg et al. type fixed point theorem. As applications, we obtain some new collective fixed point theorems for various type generalized condensing multimaps in abstract convex uniform spaces.

ELEMENTS OF THE KKM THEORY ON CONVEX SPACES

  • Park, Se-Hie
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.1-27
    • /
    • 2008
  • We introduce a new concept of convex spaces and a multimap class K having certain KKM property. From a basic KKM type theorem for a K-map defined on an convex space without any topology, we deduce ten equivalent formulations of the theorem. As applications of the equivalents, in the frame of convex topological spaces, we obtain Fan-Browder type fixed point theorems, almost fixed point theorems for multimaps, mutual relations between the map classes K and B, variational inequalities, the von Neumann type minimax theorems, and the Nash equilibrium theorems.

BEST APPROXIMATIONS FOR MULTIMAPS ON ABSTRACT CONVEX SPACES

  • Park, Sehie
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.165-175
    • /
    • 2021
  • In this article we derive some best approximation theorems for multimaps in abstract convex metric spaces. We are based on generalized KKM maps due to Kassay-Kolumbán, Chang-Zhang, and studied by Park, Kim-Park, Park-Lee, and Lee. Our main results are extensions of a recent work of Mitrović-Hussain-Sen-Radenović on G-convex metric spaces to partial KKM metric spaces. We also recall known works related to single-valued maps, and introduce new partial KKM metric spaces which can be applied our new results.

FIXED POINT THEOREMS FOR MӦNCH TYPE MAPS IN ABSTRACT CONVEX UNIFORM SPACES

  • Kim, Hoonjoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.345-353
    • /
    • 2021
  • In this paper, first, we present new fixed point theorems for Mönch type multimaps on abstract convex uniform spaces and, also, a fixed point theorem for Mönch type multimaps in Hausdorff KKM L𝚪-spaces. Second, we show that Mönch type multimaps in the better admissible class defined on an L𝚪-space have fixed point properties whenever their ranges are Klee approximable. Finally, we obtain fixed point theorems on 𝔎ℭ-maps whose ranges are 𝚽-sets.

Coincidences of composites of u.s.c. maps on h-spaces and applications

  • Park, Seh-Ie;Kim, Hoon-Joo
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.251-264
    • /
    • 1995
  • Applications of the classical Knaster-Kuratowski-Mazurkiewicz (si-mply, KKM) theorem and the fixed point theory of multifunctions defined on convex subsets of topological vector spaces have been greatly improved by adopting the concept of convex spaces due to Lassonde [L1]. In this direction, the first author [P5] found that certain coincidence theorems on a large class of composites of upper semicontinuous multifunctions imply many fundamental results in the KKM theory.

  • PDF

APPLICATIONS OF RESULTS ON ABSTRACT CONVEX SPACES TO TOPOLOGICAL ORDERED SPACES

  • Kim, Hoonjoo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.305-320
    • /
    • 2013
  • Topological semilattices with path-connected intervals are special abstract convex spaces. In this paper, we obtain generalized KKM type theorems and their analytic formulations, maximal element theorems and collectively fixed point theorems on abstract convex spaces. We also apply them to topological semilattices with path-connected intervals, and obtain generalized forms of the results of Horvath and Ciscar, Luo, and Al-Homidan et al..

VECTOR EQUILIBRIUM PROBLEMS FOR TRIFUNCTION IN MEASURABLE SPACE AND ITS APPLICATIONS

  • RAM, TIRTH;KHANNA, ANU KUMARI
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.577-585
    • /
    • 2022
  • In this work, we introduced and study vector equilibrium problems for trifunction in measurable space (for short, VEPMS). The existence of solutions of (VEPMS) are obtained by employing Aumann theorem and Fan KKM lemma. As an application, we prove an existence result for vector variational inequality problem for measurable space. Our results in this paper are new which can be considered as significant extension of previously known results in the literature.