JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **34**, No. 4, November 2021 http://dx.doi.org/10.14403/jcms.2021.34.4.345

FIXED POINT THEOREMS FOR MÖNCH TYPE MAPS IN ABSTRACT CONVEX UNIFORM SPACES

Hoonjoo Kim

ABSTRACT. In this paper, first, we present new fixed point theorems for Mönch type multimaps on abstract convex uniform spaces and, also, a fixed point theorem for Mönch type multimaps in Hausdorff KKM $L\Gamma$ -spaces. Second, we show that Mönch type multimaps in the better admissible class defined on an $L\Gamma$ -space have fixed point properties whenever their ranges are Klee approximable. Finally, we obtain fixed point theorems on \mathfrak{KC} -maps whose ranges are Φ -sets.

1. Introduction and preliminaries

Relaxing compactness of multimaps in fixed point theory is an important task. O'Regan and Precup [6] have mitigated the compactness such as a fixed point theorem for Mönch type mutimaps in Banach space. Huang et al. [2] presents some fixed point results for Mönch type selfmultimaps with s-KKM property on locally G-convex uniform spaces. Amini-Harandi et al. [1] obtained fixed point theorems for Mönch type selfmultimaps in KKM class on $L\Gamma$ -spaces. $L\Gamma$ -spaces are abstract convex uniform spaces with local convexities. The concept of $L\Gamma$ -space was introduced by Park [11] as a generalization of locally convex spaces, LG-spaces and other abstract locally convex structures.

The aim of this paper is to present new fixed point theorems for Mönch type multimaps on abstract convex uniform spaces. We obtain a fixed point theorem for Mönch type multimaps in Hausdorff KKM $L\Gamma$ spaces. We show that Mönch type multimaps in the 'better' admissible class defined on an $L\Gamma$ -space have fixed point properties whenever their

Received November 04, 2021; Accepted November 25, 2021.

²⁰¹⁰ Mathematics Subject Classification: Primary 47H10, 47H04; Secondary 46A16, 54C60.

Key words and phrases: abstract convex space, KKM map, L Γ -space, \mathfrak{KC} -map, KKM space, Φ -set, fixed point, better admissible class \mathfrak{B} .

This research was supported by the Sehan University Research Fund in 2021.

ranges are Klee approximable. And we obtain fixed point theorems on \mathfrak{KC} -maps whose ranges are Φ -sets. This result simplifies or generalizes the fixed point theorems in [1] and [2].

A multimap (or simply, a map) $F: X \multimap Y$ is a function from a set X into the power set of Y; that is, a function with the values $F(x) \subset Y$ for $x \in X$ and the fibers $F^{-}(y) := \{x \in X | y \in F(x)\}$ for $y \in Y$. For $A \subset X$, let $F(A) := \bigcup \{F(x) | x \in A\}$. Throughout this paper, we assume that multimaps have nonempty values otherwise explicitly stated or obvious from the context. The closure operation, the interior operation and graph of F are denoted by $\overline{\ }$, IntF and GrF, respectively.

Let $\langle X \rangle$ denote the set of all nonempty finite subsets of a set X.

The followings are due to Park [9, 11].

An abstract convex space $(X, D; \Gamma)$ consists of a topological space X, a non-empty set D, and a map $\Gamma : \langle D \rangle \multimap X$ with nonempty values $\Gamma_A := \Gamma(A)$ for $A \in \langle D \rangle$. For any nonempty $D' \subset D$, the Γ -convex hull of D' is denoted and defined by $\operatorname{co}_{\Gamma} D' := \bigcup \{ \Gamma_A \mid A \in \langle D' \rangle \} \subset X$.

When $D \subset X$ in $(X, D; \Gamma)$, the space is denoted by $(X \supset D; \Gamma)$ and in case X = D, let $(X; \Gamma) := (X, X; \Gamma)$. When $(X \supset D; \Gamma)$, a subset X' of X is said to be Γ -convex if $co_{\Gamma}(X' \cap D) \subset X'$. This means that $(X', D'; \Gamma')$ itself is an abstract convex space where $D' := X' \cap D$ and $\Gamma' : \langle D' \rangle \multimap X'$ a map defined by $\Gamma'_A := \Gamma_A \subset X'$ for $A \in \langle D' \rangle$.

An abstract convex uniform space $(X, D; \Gamma; \mathcal{U})$ is an abstract convex space with a basis \mathcal{U} of a uniform structure of X. $A \subset X$ and $U \in \mathcal{U}$, the set U[A] is defined to be $\{y \in X : (x, y) \in U \text{ for some } x \in A\}$. An abstract convex uniform space $(X \supset D; \Gamma; \mathcal{U})$ is called an $L\Gamma$ -space if Dis dense in X and U[C] is Γ -convex for each $U \in \mathcal{U}$ whenever $C \subset X$ is Γ -convex.

A generalized convex space or a *G*-convex space $(X, D; \Gamma)$ consists of a topological space X such that for each $A \in \langle D \rangle$ with the cardinality |A| = n + 1, there exist a subset Γ_A of X and a continuous map $\phi_A :$ $\Delta_n \to \Gamma_A$ such that $J \in \langle A \rangle$ implies $\phi_A(\Delta_J) \subset \Gamma_J$. Here, Δ_n is the standard *n*-simplex with vertices $\{e_0\}_{i=0}^n$, and Δ_J is the face of Δ_n corresponding to $J \in \langle A \rangle$; that is, if $A = \{a_0, a_1, \ldots, a_n\}$ and J = $\{a_{i_0}, a_{i_1}, \ldots, a_{i_k}\} \subset A$, then $\Delta_J = \operatorname{co}\{e_{i_0}, e_{i_1}, \ldots, e_{i_k}\}$. A subset S of X is called a *G*-convex subset of $(X \supset D; \Gamma)$ if for any $N \in \langle S \rangle$, we have $\Gamma_N \subset S$. For details on *G*-convex spaces, see [13, 14, 15].

A *G*-convex uniform space $(X, D; \Gamma; \mathcal{U})$ is a *G*-convex space with a basis \mathcal{U} of a uniform structure of *X*. A *G*-convex uniform space $(X \supset D; \Gamma; \mathcal{U})$ is said to be an *LG*-space if the uniformity \mathcal{U} has a base \mathcal{B} such

that for each $U \in \mathcal{B}$, U[C] is Γ -convex for each $U \in \mathcal{U}$ whenever $C \subset X$ is Γ -convex. The examples of *G*-convex uniform space are given in [7].

Let $(X, D; \Gamma)$ be an abstract convex space and Z be a set. For a multimap $F: X \multimap Z$, if a multimap $G: D \multimap Z$ satisfies $F(\Gamma_A) \subset G(A)$ for all $A \in \langle D \rangle$, then G is called a *KKM map* with respect to F. A *KKM map* $G: D \multimap Z$ is a KKM map with respect to the identity map 1_X .

A multimap $F: X \multimap Z$ is called a \mathfrak{K} -map if, for a KKM map $G: D \multimap Z$ with respect to F, the family $\{G(x)\}_{x \in D}$ has the finite intersection property. The set $\mathfrak{K}(X, Z)$ is defined to be $\{F: X \multimap Z \mid F \text{ is a } \mathfrak{K} \text{-map}\}$. Similarly, a $\mathfrak{K}\mathfrak{C}$ -map is defined for closed-valued maps G and a $\mathfrak{K}\mathfrak{O}$ -map for open-valued maps G.

For an abstract convex space $(X, D; \Gamma)$, the *KKM principle* is the statement $1_X \in \mathfrak{KC}(X, X) \cap \mathfrak{KO}(X, X)$. An abstract convex space is called a *KKM space* if it satisfies the KKM principle. Known examples of KKM spaces are given in [10, 12] and the references therein. Note that a generalized convex space is also a KKM space.

Let $(X \supset D; \Gamma)$ be an abstract convex space, $A \subset X$ and put

 Γ -co $A = \bigcap \{ C \mid C \text{ is a } \Gamma$ -convex subset of X containing $A \}$, and

 Γ - $\overline{\operatorname{co}}A = \bigcap \{ C \mid C \text{ is a closed } \Gamma$ -convex subset of X containing $A \}.$

Note that Γ -coA and Γ - $\overline{\operatorname{co}}A$ are the smallest Γ -convex set and the smallest closed Γ -convex set containing A, respectively. When $A \subset D$, $\operatorname{co}_{\Gamma}A \subset \Gamma$ -coA.

A subset S of a uniform space X is said to be *precompact* if, for any entourage V, there is an $N \in \langle X \rangle$ such that $S \subset V[N]$. For each $N \in \langle X \rangle$, Γ -coN is called a *polytope* in X. An $L\Gamma$ -space $(X \supset D; \Gamma; \mathcal{U})$ is called an $L\Gamma$ -space with precompact polytopes if each polytope in X is precompact.

Note that Amini-Harandi et al [1] called an $L\Gamma$ -space with precompact polytopes as an abstract convex uniform space.

The following lemma is in [5]:

LEMMA 1.1. If $(X \supset D; \Gamma; \mathcal{U})$ is an L Γ -space with precompact polytopes and A is precompact, then Γ -coA is precompact.

2. Fixed point theorems for Mönch type maps

From now on we assume that every topological space is Hausdorff.

The following proposition is a crucial tool for Mönch type fixed point theorems:

PROPOSITION 2.1. Let $\{(X \supset D; \Gamma; \mathcal{U})\}$ be an $L\Gamma$ -space with precompact polytopes. Suppose $T : X \multimap X$ is a map that satisfies the following properties:

- (1) T maps compact sets into precompact sets;
- (2) for any compact subset A of X, there exists a countable subset B of A with $\overline{B} = A$; and
- (3) every subset A of X is compact, whenever $A = \Gamma \overline{\operatorname{co}}(\{x_0\} \cup T(A))$ for some $x_0 \in X$ and there exists a countable subset C of A with $A = \overline{C}$.

Then there exists a nonempty compact Γ -convex subset K of X such that $T(K) \subset K$.

Proof. We are motivated by the proof of Theorem 2.4 in [1].

Choose $x_0 \in X$ and put $K_0 = \Gamma \overline{\operatorname{co}}(\{x_0\}), K_{n+1} = \Gamma \overline{\operatorname{co}}(\{x_0\} \cup T(K_n))$ for $n = 0, 1, 2, \cdots$ and $K = \bigcup_{n=0}^{\infty} K_n$. By induction, $K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n \subseteq K_{n+1} \cdots$ and K is Γ -convex, since K_n is Γ -convex for $n = 0, 1, 2, \cdots$.

Furthermore we can show that $K = \Gamma \overline{\operatorname{co}}(\{x_0\} \cup T(K))$. For each $n, \Gamma \overline{\operatorname{co}}(\{x_0\} \cup T(K_n)) \subseteq \Gamma \overline{\operatorname{co}}(\{x_0\} \cup T(K))$, so $K = \bigcup_{n=0}^{\infty} \Gamma \overline{\operatorname{co}}(\{x_0\} \cup T(K_n)) \subseteq \Gamma \overline{\operatorname{co}}(\{x_0\} \cup T(K))$. On the other hand, K is a closed $\Gamma \overline{\operatorname{convex}}$ set which contains x_0 and $\bigcup_{n=0}^{\infty} T(K_n) = T(K)$, hence $\Gamma \overline{\operatorname{co}}(\{x_0\} \cup T(K)) \subseteq T(K)) \subseteq K$.

By (1) and Lemma 1.1, K_n is compact for $n = 0, 1, 2, \cdots$. Condition (2) implies that there exists a countable subset C_n of K_n with $\overline{C}_n = K_n$. Put $C = \bigcup_{n=0}^{\infty} C_n$, then $\overline{C} = K$, since $K = \bigcup_{n=0}^{\infty} K_n = \bigcup_{n=0}^{\infty} \overline{C_n} = \overline{\bigcup_{n=0}^{\infty} C_n} = \overline{C}$. Condition (3) implies that K is compact.

The following proposition is in [11]:

PROPOSITION 2.2. Let $(X \supset D; \Gamma; \mathcal{U})$ be a KKM $L\Gamma$ -space and $T : X \multimap X$ be a compact upper semicontinuous map with closed Γ -convex values. Then T has a fixed point.

THEOREM 2.3. Let $(X \supset D; \Gamma; \mathcal{U})$ be a KKM $L\Gamma$ -space with precompact polytopes and $T : X \multimap X$ be a closed multimap with Γ -convex values that satisfies the following properties:

- (1) T maps compact sets into precompact sets;
- (2) for any compact subset A of X, there exists a countable subset B of A with $\overline{B} = A$; and

(3) every subset A of X is compact, whenever $A = \Gamma - \overline{\operatorname{co}}(\{x_0\} \cup T(A))$ for some $x_0 \in X$ and there exists a countable subset C of A with $A = \overline{C}$.

Then T has a fixed point.

Proof. By Proposition 2.1, there exists a compact Γ-convex subset K of X such that $T(K) \subset K$. Since $T|_K$ is compact and closed, $T|_K$ is an upper semicontinuous map with closed Γ-convex values. By Proposition 2.2, $T|_K$ has a fixed point.

COROLLARY 2.4. Let $(X \supset D; \Gamma; \mathcal{U})$ be an LG-space with precompact polytopes and $T: X \multimap X$ be a closed multimap with Γ -convex values that satisfies the following properties:

- (1) T maps compact sets into precompact sets;
- (2) for any compact subset A of X, there exists a countable subset B of A with $\overline{B} = A$; and
- (3) every subset A of X is compact, whenever $A = \Gamma \overline{\operatorname{co}}(\{x_0\} \cup T(A))$ for some $x_0 \in X$ and there exists a countable subset C of A with $A = \overline{C}$.

Then T has a fixed point.

Now, we follow the definitions in [11].

Let $(E, D; \Gamma)$ be an abstract convex space, X be a nonempty subset of E, and Y be a topological space. The better admissible class \mathfrak{B} of maps from X into Y is defined as follows:

 $F \in \mathfrak{B}(X,Y) \iff F: X \multimap Y$ is a map such that, for any $\Gamma_N \subset X$, where $N \in \langle D \rangle$ with the cardinality |N| = n + 1, and for any continuous function $p: F(\Gamma_N) \to \Delta_n$, there exists a continuous function $\phi_N: \Delta_n \to \Gamma_N$ such that the composition $p \circ F|_{\Gamma_N} \circ \phi_N: \Delta_n \to \Delta_n$ has a fixed point.

Let $(E, D; \Gamma; \mathcal{U})$ be an abstract convex uniform space. A subset K of E is said to be *Klee approximable* if, for each entourage $U \in \mathcal{U}$, there exists a continuous function $h: K \to E$ satisfying

(1) $(x, h(x)) \in \mathcal{U}$ for all $x \in K$;

(2) $h(K) \subset \Gamma_N$ for some $N \in \langle D \rangle$; and

(3) there exist continuous functions $p: K \to \Delta_n$ and $\phi_N : \Delta_n \to \Gamma_N$ with |N| = n + 1 such that $h = \phi_N \circ p$.

The following proposition is a fixed point theorem for the class \mathfrak{B} of multimaps in [11]:

PROPOSITION 2.5. Let $(X \supset D; \Gamma; \mathcal{U})$ be an abstract convex uniform space and $T \in \mathfrak{B}(X, X)$ be a closed map such that T(X) is compact Klee approximable. Then T has a fixed point.

THEOREM 2.6. Let $(X \supset D; \Gamma; \mathcal{U})$ be an $L\Gamma$ -space with precompact polytopes and $T \in \mathfrak{B}(X, X)$ be a closed multimap that satisfies the following properties:

- (1) T maps compact sets into precompact sets;
- (2) for any compact subset A of X, there exists a countable subset B of A with $\overline{B} = A$;
- (3) every subset A of X is compact, whenever $A = \Gamma \overline{\operatorname{co}}(\{x_0\} \cup T(A))$ for some $x_0 \in X$ and there exists a countable subset C of A with $A = \overline{C}$; and
- (4) for any compact Γ -convex subset A of X, T(A) is Klee approximable.

Then T has a fixed point.

Proof. By Proposition 2.1, there exists a compact Γ -convex subset K of X such that $T(K) \subset K$. Then $T|_K$ is closed and T(K) is compact Klee approximable. $T \in \mathfrak{B}(X, X)$ implies $T|_K \in \mathfrak{B}(K, K)$. By Proposition 2.5, $T|_K$ has a fixed point.

An abstract convex uniform space $(X; \Gamma; \mathcal{U})$ is called *admissible* iff every compact subset of X is Klee approximable. Therefore the following corollary holds:

COROLLARY 2.7. Let $(X \supset D; \Gamma; \mathcal{U})$ be an admissible $L\Gamma$ -space with precompact polytopes and $T \in \mathfrak{B}(X, X)$ be a closed multimap that satisfies the following properties:

- (1) T maps compact sets into precompact sets;
- (2) for any compact subset A of X, there exists a countable subset B of A with $\overline{B} = A$; and
- (3) every subset A of X is compact, whenever $A = \Gamma \overline{\operatorname{co}}(\{x_0\} \cup T(A))$ for some $x_0 \in X$ and there exists a countable subset C of A with $A = \overline{C}$.

Then T has a fixed point.

For a given abstract convex space $(X \supset D; \Gamma)$ and a topological space Y, a map $H: Y \multimap X$ is called a Φ -map if there exists a map $G: Y \multimap X$ such that

- (1) for each $y \in Y$, $co_{\Gamma}G(y) \subset H(y)$; and
- (2) $Y = \bigcup \{ \operatorname{Int} G^{-}(x) \mid x \in X \}.$

In an abstract convex uniform space $(X \supset D; \Gamma; \mathcal{U})$, a subset S of X is called a Φ -set if, for any entourage $U \in \mathcal{U}$, there exists a Φ -map $H: S \multimap X$ such that $\operatorname{Gr} H \subset U$.

Note that if a subset Y of X is a Φ -set, then any subset of A of Y is a Φ -set [1, Lemma 1.8].

The following propositions are in [9], [11]:

PROPOSITION 2.8. Let $(X \supset D; \Gamma)$ be an abstract convex space, C be a Γ -convex subset of X and Z be a set. If $T \in \mathfrak{K}(X, Z)$, then $T|_C \in \mathfrak{K}(C, Z)$.

PROPOSITION 2.9. Let $(X \supset D; \Gamma; \mathcal{U})$ be an abstract convex uniform space, and $T \in \mathfrak{KC}(X, X)$ be a compact closed map. If $\overline{T(X)}$ is a Φ -set, then T has a fixed point.

THEOREM 2.10. Let $(X \supset D; \Gamma; \mathcal{U})$ be an L Γ -space with precompact polytopes, and $T \in \mathfrak{KC}(X, X)$ be a closed multimap that satisfies the following properties:

- (1) T maps compact sets into precompact sets;
- (2) for any compact subset A of X, there exists a countable subset B of A with $\overline{B} = A$;
- (3) every subset A of X is compact, whenever $A = \Gamma \overline{\operatorname{co}}(\{x_0\} \cup T(A))$ for some $x_0 \in X$ and there exists a countable subset C of A with $A = \overline{C}$; and
- (4) $T(\overline{X})$ is a Φ -set.

Then T has a fixed point.

Proof. By Proposition 2.1, there exists a compact Γ -convex subset K of X such that $T(K) \subset K$. Then $T|_K$ is compact closed. Since $\overline{T(X)}$ is a Φ -set, so is $\overline{T(K)}$. By Proposition 2.8 and Proposition 2.9, $T|_K \in \mathfrak{KC}(K, K)$ and $T|_K$ has a fixed point. \Box

COROLLARY 2.11. Let $(X \supset D; \Gamma; \mathcal{U})$ be an $L\Gamma$ -space with precompact polytopes and X be a Φ -set. And let $T \in \mathfrak{KC}(X, X)$ be a closed multimap that satisfies the following properties:

- (1) T maps compact sets into precompact sets;
- (2) for any compact subset A of X, there exists a countable subset B of A with $\overline{B} = A$; and
- (3) every subset A of X is compact, whenever $A = \Gamma \overline{\operatorname{co}}(\{x_0\} \cup T(A))$ for some $x_0 \in X$ and there exists a countable subset C of A with $A = \overline{C}$.

Then T has a fixed point.

Note that Corollary 2.11 deletes a necessary condition of Theorem 2.4 in [1].

If every singleton of an L Γ -space $(X \supset D; \Gamma; \mathcal{U})$ is Γ -convex, then any subset of X is a Φ -set [11]. Therefore the following corollary holds:

COROLLARY 2.12. Let $(X \supset D; \Gamma; \mathcal{U})$ be an $L\Gamma$ -space with precompact polytopes and every singleton of X be Γ -convex. Let $T \in \mathfrak{KC}(X, X)$ be a closed multimap that satisfies the following properties:

- (1) T maps compact sets into precompact sets;
- (2) for any compact subset A of X, there exists a countable subset B of A with $\overline{B} = A$; and
- (3) every subset A of X is compact, whenever $A = \Gamma \overline{\operatorname{co}}(\{x_0\} \cup T(A))$ for some $x_0 \in X$ and there exists a countable subset C of A with $A = \overline{C}$.

Then T has a fixed point.

Let X be a nonempty set, $(Y; \Gamma)$ be an abstract convex space and Z be a topological space. If $S: X \multimap Y, T: Y \multimap Z$ and $F: X \multimap Z$ are three multimaps satisfying

$$T(co_{\Gamma}S(A)) \subset F(A)$$
 for all $A \in \langle X \rangle$,

then F is called an S-KKM map with respect to T. If for any S-KKM map F with respect to T, the family $\{\overline{F(x)}\}_{x \in X}$ has the finite intersection property, then T is said to have the S-KKM property. The class S-KKM (X, Y, Z) is defined to be the set $\{T : Y \multimap Z | T \text{ has the } S$ -KKM property}. If X = Y and S is the identity map 1_X , then S-KKM $(X, Y, Z) = \mathfrak{KC}(X, Z)$.

It is shown that s-KKM $(X, Y, Z) \subset \mathfrak{KC}(Y, Z)$ for any surjective single valued function $s : X \to Y$ in [4], so Corollary 2.12 can be reformulated for $T \in s$ -KKM(Z, X, X).

An LG-space $(X; \Gamma; \mathcal{U})$ is said to be an *locally G-convex space* in [3] if $U[\{x\}]$ is Γ -convex for each $x \in X$ and $U \in \mathcal{U}$, and if Γ -coA is precompact whenever A is precompact. So a locally *G*-convex space is an $L\Gamma$ -space with precompact polytopes such that every singleton of X is Γ -convex. Therefore Corollary 2.12 generalizes and deletes an extra condition of Theorem 2.1 in [2].

Park [8] showed that S-KKM(X, Y, Z) becomes $\mathfrak{KC}(Y, Z)$ by giving abstract convexity to the classical convex set Y.

References

- A. Amini-Harandi, A. P. Farajzadeh, D. O'Regan and R. P. Agarwal, Fixed point theorems for condensing multimaps on abstract convex uniform spaces, Nonlinear Funct. Anal. and Appl., 14 (2009), 109-120.
- [2] Y. Y. Huang, J. C. Jeng and T. Y. Kuo, Fixed point theorems for condensing maps in S-KKM class, Int. J. Math. Anal., 2 (2008), 1031-1044.
- [3] Y. Y. Huang, T. Y. Kuo and J. C. Jeng, Fixed point theorems for condensing multimaps on locally G-convex spaces, Nonlinear Anal., 67 (2007), 1522-1531.
- [4] H. Kim, Fixed points for generalized condensing maps in abstract convex uniform spaces, Int. J. Math. Anal., 8 (2014), 2899-2908.
- [5] H. Kim, Fixed point theorems for Chandrabhan type maps in abstract convex uniform spaces, J. Nonlinear Funct. Anal., 2021 (2021), Article ID 17, 1-8.
- [6] D. O'Regan and R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. Math. Anal. Appl., 245 (2000), 594-612.
- [7] S. Park, Fixed point theorems in locally G-convex spaces, Equilibrium existence theorems in KKM spaces, Nonlinear Anal., 48 (2002), 869-879.
- [8] S. Park, On generalizations of the KKM principle on abstract convex spaces, Nonlinear Anal. Forum., 11 (2006), 67-77.
- [9] S. Park, Elements of the KKM theory on abstract convex spaces, J. Korean Math. Soc., 45 (2008), 1-27.
- [10] S. Park, Equilibrium existence theorems in KKM spaces, Nonlinear Anal., 69 (2008), 4352-4364.
- [11] S. Park, Fixed point theory of multimaps in abstract convex uniform spaces, Nonlinear Anal., 71 (2009), 2468-2480.
- [12] S. Park, The KKM principle in abstract convex spaces: equivalent formulations and applications, Nonlinear Anal., 73 (2010), 1028-1042.
- [13] S. Park and H. Kim, Admissible classes of multifunctions on generalized convex spaces, Proc. Coll. Natur. Sci., Seoul Nat. Univ. 18 (1993), 1-21.
- [14] S. Park and H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl., 197 (1996), 173-187.
- [15] S. Park and H. Kim, Foundations of the KKM theory on generalized convex spaces, J. Math. Anal. Appl., 209 (1997), 551-571.

Department of Mathematics Education Sehan University Chunnam 58447, Republic of Korea *E-mail*: hoonjoo@sehan.ac.kr