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FIXED POINT THEOREMS FOR MÖNCH TYPE MAPS

IN ABSTRACT CONVEX UNIFORM SPACES

Hoonjoo Kim

Abstract. In this paper, first, we present new fixed point theo-
rems for Mönch type multimaps on abstract convex uniform spaces
and, also, a fixed point theorem for Mönch type multimaps in Haus-
dorff KKM LΓ-spaces. Second, we show that Mönch type mul-
timaps in the better admissible class defined on an LΓ-space have
fixed point properties whenever their ranges are Klee approximable.
Finally, we obtain fixed point theorems on KC-maps whose ranges
are Φ-sets.

1. Introduction and preliminaries

Relaxing compactness of multimaps in fixed point theory is an im-
portant task. O’Regan and Precup [6] have mitigated the compactness
such as a fixed point theorem for Mönch type mutimaps in Banach space.
Huang et al. [2] presents some fixed point results for Mönch type self-
multimaps with s-KKM property on locally G-convex uniform spaces.
Amini-Harandi et al. [1] obtained fixed point theorems for Mönch type
selfmultimaps in KKM class on LΓ-spaces. LΓ-spaces are abstract con-
vex uniform spaces with local convexities. The concept of LΓ-space was
introduced by Park [11] as a generalization of locally convex spaces,
LG-spaces and other abstract locally convex structures.

The aim of this paper is to present new fixed point theorems for
Mönch type multimaps on abstract convex uniform spaces. We obtain a
fixed point theorem for Mönch type multimaps in Hausdorff KKM LΓ-
spaces. We show that Mönch type multimaps in the ’better’ admissible
class defined on an LΓ-space have fixed point properties whenever their
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ranges are Klee approximable. And we obtain fixed point theorems on
KC-maps whose ranges are Φ-sets. This result simplifies or generalizes
the fixed point theorems in [1] and [2].

A multimap (or simply, a map) F : X ( Y is a function from a set X
into the power set of Y ; that is, a function with the values F (x) ⊂ Y for
x ∈ X and the fibers F−(y) := {x ∈ X| y ∈ F (x)} for y ∈ Y . For A ⊂ X,
let F (A) :=

⋃
{F (x) |x ∈ A}. Throughout this paper, we assume that

multimaps have nonempty values otherwise explicitly stated or obvious
from the context. The closure operation, the interior operation and
graph of F are denoted by , IntF and GrF, respectively.

Let 〈X〉 denote the set of all nonempty finite subsets of a set X.

The followings are due to Park [9, 11].
An abstract convex space (X,D; Γ) consists of a topological space X,

a non-empty set D, and a map Γ : 〈D〉 ( X with nonempty values
ΓA := Γ(A) for A ∈ 〈D〉. For any nonempty D′ ⊂ D, the Γ-convex hull
of D′ is denoted and defined by coΓD

′ :=
⋃
{ΓA |A ∈ 〈D′〉} ⊂ X.

When D ⊂ X in (X,D; Γ), the space is denoted by (X ⊃ D; Γ) and
in case X = D, let (X; Γ) := (X,X; Γ). When (X ⊃ D; Γ), a subset
X ′ of X is said to be Γ-convex if coΓ(X ′ ∩ D) ⊂ X ′. This means that
(X ′, D′; Γ′) itself is an abstract convex space where D′ := X ′ ∩ D and
Γ′ : 〈D′〉( X ′ a map defined by Γ′A := ΓA ⊂ X ′ for A ∈ 〈D′〉.

An abstract convex uniform space (X,D; Γ;U) is an abstract convex
space with a basis U of a uniform structure of X. A ⊂ X and U ∈ U ,
the set U [A] is defined to be {y ∈ X : (x, y) ∈ U for some x ∈ A}. An
abstract convex uniform space (X ⊃ D; Γ;U) is called an LΓ-space if D
is dense in X and U [C] is Γ-convex for each U ∈ U whenever C ⊂ X is
Γ-convex.

A generalized convex space or a G-convex space (X,D; Γ) consists of
a topological space X such that for each A ∈ 〈D〉 with the cardinality
|A| = n + 1, there exist a subset ΓA of X and a continuous map φA :
∆n → ΓA such that J ∈ 〈A〉 implies φA(∆J) ⊂ ΓJ . Here, ∆n is the
standard n-simplex with vertices {e0}ni=0, and ∆J is the face of ∆n

corresponding to J ∈ 〈A〉; that is, if A = {a0, a1, . . . , an} and J =
{ai0 , ai1 , . . . , aik} ⊂ A, then ∆J = co{ei0 , ei1 , . . . , eik}. A subset S of X
is called a G-convex subset of (X ⊃ D; Γ) if for any N ∈ 〈S〉, we have
ΓN ⊂ S. For details on G-convex spaces, see [13, 14, 15].

A G-convex uniform space (X,D; Γ;U) is a G-convex space with a
basis U of a uniform structure of X. A G-convex uniform space (X ⊃
D; Γ;U) is said to be an LG-space if the uniformity U has a base B such



Fixed point theorems for Mönch type maps 347

that for each U ∈ B, U [C] is Γ-convex for each U ∈ U whenever C ⊂ X
is Γ-convex. The examples of G-convex uniform space are given in [7].

Let (X,D; Γ) be an abstract convex space and Z be a set. For a
multimap F : X ( Z, if a multimap G : D ( Z satisfies F (ΓA) ⊂ G(A)
for all A ∈ 〈D〉, then G is called a KKM map with respect to F . A KKM
map G : D ( Z is a KKM map with respect to the identity map 1X .

A multimap F : X ( Z is called a K-map if, for a KKM mapG : D (
Z with respect to F, the family {G(x)}x∈D has the finite intersection
property. The set K(X,Z) is defined to be {F : X ( Z |F is a K -map}.
Similarly, a KC-map is defined for closed-valued maps G and a KO-map
for open-valued maps G.

For an abstract convex space (X,D; Γ), the KKM principle is the
statement 1X ∈ KC(X,X) ∩ KO(X,X). An abstract convex space is
called a KKM space if it satisfies the KKM principle. Known examples
of KKM spaces are given in [10, 12] and the references therein. Note
that a generalized convex space is also a KKM space.

Let (X ⊃ D; Γ) be an abstract convex space, A ⊂ X and put
Γ-coA =

⋂
{C |C is a Γ-convex subset of X containing A}, and

Γ-coA =
⋂
{C |C is a closed Γ-convex subset of X containing A}.

Note that Γ-coA and Γ-coA are the smallest Γ-convex set and the
smallest closed Γ-convex set containing A, respectively. When A ⊂ D,
coΓA ⊂ Γ-coA.

A subset S of a uniform space X is said to be precompact if, for
any entourage V, there is an N ∈ 〈X〉 such that S ⊂ V [N ]. For each
N ∈ 〈X〉, Γ-coN is called a polytope in X. An LΓ-space (X ⊃ D; Γ;U)
is called an LΓ-space with precompact polytopes if each polytope in X is
precompact.

Note that Amini-Harandi et al [1] called an LΓ-space with precompact
polytopes as an abstract convex uniform space.

The following lemma is in [5]:

Lemma 1.1. If (X ⊃ D; Γ;U) is an LΓ-space with precompact poly-
topes and A is precompact, then Γ-coA is precompact.

2. Fixed point theorems for Mönch type maps

From now on we assume that every topological space is Hausdorff.
The following proposition is a crucial tool for Mönch type fixed point

theorems:
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Proposition 2.1. Let {(X ⊃ D; Γ;U)} be an LΓ-space with pre-
compact polytopes. Suppose T : X ( X is a map that satisfies the
following properties:

(1) T maps compact sets into precompact sets;
(2) for any compact subset A of X, there exists a countable subset B

of A with B = A; and
(3) every subset A of X is compact, whenever A = Γ-co({x0}∪T (A))

for some x0 ∈ X and there exists a countable subset C of A with
A = C.

Then there exists a nonempty compact Γ-convex subset K of X such
that T (K) ⊂ K.

Proof. We are motivated by the proof of Theorem 2.4 in [1].

Choose x0 ∈ X and put K0 = Γ-co({x0}), Kn+1 = Γ-co({x0} ∪
T (Kn)) for n = 0, 1, 2, · · · and K =

⋃∞
n=0Kn. By induction, K0 ⊆

K1 ⊆ · · · ⊆ Kn ⊆ Kn+1 · · · and K is Γ-convex, since Kn is Γ-convex for
n = 0, 1, 2, · · · .

Furthermore we can show that K = Γ-co({x0} ∪ T (K)). For each
n, Γ-co({x0} ∪ T (Kn)) ⊆ Γ-co({x0} ∪ T (K)), so K =

⋃∞
n=0 Γ-co({x0} ∪

T (Kn)) ⊆ Γ-co({x0}∪T (K)). On the other hand, K is a closed Γ-convex
set which contains x0 and

⋃∞
n=0 T (Kn) = T (K), hence Γ-co({x0} ∪

T (K)) ⊆ K.
By (1) and Lemma 1.1, Kn is compact for n = 0, 1, 2, · · · . Condition

(2) implies that there exists a countable subset Cn of Kn with Cn = Kn.
Put C =

⋃∞
n=0Cn, then C = K, since K =

⋃∞
n=0Kn =

⋃∞
n=0Cn =⋃∞

n=0Cn = C. Condition (3) implies that K is compact.

The following proposition is in [11]:

Proposition 2.2. Let (X ⊃ D; Γ;U) be a KKM LΓ-space and T :
X ( X be a compact upper semicontinuous map with closed Γ-convex
values. Then T has a fixed point.

Theorem 2.3. Let (X ⊃ D; Γ;U) be a KKM LΓ-space with precom-
pact polytopes and T : X ( X be a closed multimap with Γ-convex
values that satisfies the following properties:

(1) T maps compact sets into precompact sets;
(2) for any compact subset A of X, there exists a countable subset B

of A with B = A; and
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(3) every subset A of X is compact, whenever A = Γ-co({x0}∪T (A))
for some x0 ∈ X and there exists a countable subset C of A with
A = C.

Then T has a fixed point.

Proof. By Proposition 2.1, there exists a compact Γ-convex subset K
of X such that T (K) ⊂ K. Since T |K is compact and closed, T |K is an
upper semicontinuous map with closed Γ-convex values. By Proposition
2.2, T |K has a fixed point.

Corollary 2.4. Let (X ⊃ D; Γ;U) be an LG-space with precompact
polytopes and T : X ( X be a closed multimap with Γ-convex values
that satisfies the following properties:

(1) T maps compact sets into precompact sets;
(2) for any compact subset A of X, there exists a countable subset B

of A with B = A; and
(3) every subset A of X is compact, whenever A = Γ-co({x0}∪T (A))

for some x0 ∈ X and there exists a countable subset C of A with
A = C.

Then T has a fixed point.

Now, we follow the definitions in [11].

Let (E,D; Γ) be an abstract convex space, X be a nonempty subset
of E, and Y be a topological space. The better admissible class B of
maps from X into Y is defined as follows:

F ∈ B(X,Y ) ⇐⇒ F : X ( Y is a map such that, for any ΓN ⊂ X,
where N ∈ 〈D〉 with the cardinality |N | = n+1, and for any continuous
function p : F (ΓN )→ ∆n, there exists a continuous function φN : ∆n →
ΓN such that the composition p ◦ F |ΓN

◦ φN : ∆n → ∆n has a fixed
point.

Let (E,D; Γ;U) be an abstract convex uniform space. A subset K of
E is said to be Klee approximable if, for each entourage U ∈ U , there
exists a continuous function h : K → E satisfying

(1) (x, h(x)) ∈ U for all x ∈ K;

(2) h(K) ⊂ ΓN for some N ∈ 〈D〉; and

(3) there exist continuous functions p : K → ∆n and φN : ∆n → ΓN

with |N | = n+ 1 such that h = φN ◦ p.

The following proposition is a fixed point theorem for the class B of
multimaps in [11]:
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Proposition 2.5. Let (X ⊃ D; Γ;U) be an abstract convex uniform
space and T ∈ B(X,X) be a closed map such that T (X) is compact
Klee approximable. Then T has a fixed point.

Theorem 2.6. Let (X ⊃ D; Γ;U) be an LΓ-space with precompact
polytopes and T ∈ B(X,X) be a closed multimap that satisfies the
following properties:

(1) T maps compact sets into precompact sets;
(2) for any compact subset A of X, there exists a countable subset B

of A with B = A;
(3) every subset A of X is compact, whenever A = Γ-co({x0}∪T (A))

for some x0 ∈ X and there exists a countable subset C of A with
A = C; and

(4) for any compact Γ-convex subset A of X, T (A) is Klee approx-
imable.

Then T has a fixed point.

Proof. By Proposition 2.1, there exists a compact Γ-convex subset K
ofX such that T (K) ⊂ K. Then T |K is closed and T (K) is compact Klee
approximable. T ∈ B(X,X) implies T |K ∈ B(K,K). By Proposition
2.5, T |K has a fixed point.

An abstract convex uniform space (X; Γ;U) is called admissible iff
every compact subset ofX is Klee approximable. Therefore the following
corollary holds:

Corollary 2.7. Let (X ⊃ D; Γ;U) be an admissible LΓ-space with
precompact polytopes and T ∈ B(X,X) be a closed multimap that
satisfies the following properties:

(1) T maps compact sets into precompact sets;
(2) for any compact subset A of X, there exists a countable subset B

of A with B = A; and
(3) every subset A of X is compact, whenever A = Γ-co({x0}∪T (A))

for some x0 ∈ X and there exists a countable subset C of A with
A = C.

Then T has a fixed point.

For a given abstract convex space (X ⊃ D; Γ) and a topological space
Y, a map H : Y ( X is called a Φ-map if there exists a map G : Y ( X
such that

(1) for each y ∈ Y, coΓG(y) ⊂ H(y); and
(2) Y =

⋃
{ IntG−(x) |x ∈ X}.
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In an abstract convex uniform space (X ⊃ D; Γ;U), a subset S of X
is called a Φ-set if, for any entourage U ∈ U , there exists a Φ-map
H : S ( X such that GrH ⊂ U .

Note that if a subset Y of X is a Φ-set, then any subset of A of Y is
a Φ-set [1, Lemma 1.8].

The following propositions are in [9], [11]:

Proposition 2.8. Let (X ⊃ D; Γ) be an abstract convex space,
C be a Γ-convex subset of X and Z be a set. If T ∈ K(X,Z), then
T |C ∈ K(C,Z).

Proposition 2.9. Let (X ⊃ D; Γ;U) be an abstract convex uniform

space, and T ∈ KC(X,X) be a compact closed map. If T (X) is a Φ-set,
then T has a fixed point.

Theorem 2.10. Let (X ⊃ D; Γ;U) be an LΓ-space with precompact
polytopes, and T ∈ KC(X,X) be a closed multimap that satisfies the
following properties:

(1) T maps compact sets into precompact sets;
(2) for any compact subset A of X, there exists a countable subset B

of A with B = A;
(3) every subset A of X is compact, whenever A = Γ-co({x0}∪T (A))

for some x0 ∈ X and there exists a countable subset C of A with
A = C; and

(4) T (X) is a Φ-set.

Then T has a fixed point.

Proof. By Proposition 2.1, there exists a compact Γ-convex subset
K of X such that T (K) ⊂ K. Then T |K is compact closed. Since

T (X) is a Φ-set, so is T (K). By Proposition 2.8 and Proposition 2.9,
T |K ∈ KC(K,K) and T |K has a fixed point.

Corollary 2.11. Let (X ⊃ D; Γ;U) be an LΓ-space with precom-
pact polytopes and X be a Φ-set. And let T ∈ KC(X,X) be a closed
multimap that satisfies the following properties:

(1) T maps compact sets into precompact sets;
(2) for any compact subset A of X, there exists a countable subset B

of A with B = A; and
(3) every subset A of X is compact, whenever A = Γ-co({x0}∪T (A))

for some x0 ∈ X and there exists a countable subset C of A with
A = C.

Then T has a fixed point.
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Note that Corollary 2.11 deletes a necessary condition of Theorem
2.4 in [1].

If every singleton of an LΓ-space (X ⊃ D; Γ;U) is Γ-convex, then any
subset of X is a Φ-set [11]. Therefore the following corollary holds:

Corollary 2.12. Let (X ⊃ D; Γ;U) be an LΓ-space with precom-
pact polytopes and every singleton of X be Γ-convex. Let T ∈ KC(X,X)
be a closed multimap that satisfies the following properties:

(1) T maps compact sets into precompact sets;
(2) for any compact subset A of X, there exists a countable subset B

of A with B = A; and
(3) every subset A of X is compact, whenever A = Γ-co({x0}∪T (A))

for some x0 ∈ X and there exists a countable subset C of A with
A = C.

Then T has a fixed point.

Let X be a nonempty set, (Y ; Γ) be an abstract convex space and Z
be a topological space. If S : X ( Y , T : Y ( Z and F : X ( Z are
three multimaps satisfying

T (coΓS(A)) ⊂ F (A) for all A ∈ 〈X〉,

then F is called an S-KKM map with respect to T . If for any S-KKM
map F with respect to T , the family {F (x)}x∈X has the finite inter-
section property, then T is said to have the S-KKM property. The
class S-KKM (X,Y, Z) is defined to be the set {T : Y ( Z |T has
the S-KKM property}. If X = Y and S is the identity map 1X , then
S-KKM(X,Y, Z) = KC(X,Z).

It is shown that s-KKM(X,Y, Z) ⊂ KC(Y, Z) for any surjective single
valued function s : X → Y in [4], so Corollary 2.12 can be reformulated
for T ∈ s-KKM(Z,X,X).

An LG-space (X; Γ;U) is said to be an locally G-convex space in
[3] if U [{x}] is Γ-convex for each x ∈ X and U ∈ U , and if Γ-coA is
precompact whenever A is precompact. So a locally G-convex space is
an LΓ-space with precompact polytopes such that every singleton of X
is Γ-convex. Therefore Corollary 2.12 generalizes and deletes an extra
condition of Theorem 2.1 in [2].

Park [8] showed that S-KKM(X,Y, Z) becomes KC(Y, Z) by giving
abstract convexity to the classical convex set Y .
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