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APPLICATIONS OF RESULTS ON ABSTRACT CONVEX

SPACES TO TOPOLOGICAL ORDERED SPACES

Hoonjoo Kim

Abstract. Topological semilattices with path-connected intervals are
special abstract convex spaces. In this paper, we obtain generalized KKM
type theorems and their analytic formulations, maximal element theorems
and collectively fixed point theorems on abstract convex spaces. We also
apply them to topological semilattices with path-connected intervals, and
obtain generalized forms of the results of Horvath and Ciscar, Luo, and
Al-Homidan et al..

1. Introduction and preliminaries

Recently, S. Park [10, 11, 12, 13] introduced the new concept of abstract
convex spaces as a far-reaching generalization of convex spaces, H-spaces, gen-
eralized convex (or G-convex) spaces and other abstract convex structures. He
established in such a context the foundations of the KKM theory, as well as
fixed point theorems and other results for multimaps.

On the other hand, Horvath and Ciscar [2] studied topological semilattices
with path-connected intervals and established in such a context an order theo-
retical version of the classical KKM theorem, and existence results for greatest
elements of a weak preference relation or maximal elements of a strict prefer-
ence relation. On such semilattices, Luo [6, 7] obtained a KKM theorem and
Ky Fan’s section theorems, and Al-Homidan et al. [1] obtained a collectively
fixed point theorem for a family of multimaps.

In Section 2, we obtain generalized KKM type theorems and their analytic
formulations on abstract convex spaces. And we also get generalizations of Ky
Fan’s section theorem and Ky Fan’s Lemma. In Section 3, we obtain existence
results for the largest elements of a weak preference relation or maximal ele-
ments for a strict preference relation on abstract convex spaces. Finally we get
collectively fixed point theorems on abstract convex spaces. In each section, we
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show that the generalized forms of consequences in [1, 2, 6, 7] on topological
semilattices with path-connected intervals follow from our results.

A multimap (or simply, a map) F : X ⊸ Y is a function from a set X
into the power set of Y ; that is, a function with the values F (x) ⊂ Y for
x ∈ X and the fibers F−(y) := {x ∈ X | y ∈ F (x)} for y ∈ Y . For A ⊂ X , let
F (A) :=

⋃
{F (x) |x ∈ A}. Throughout this paper, we assume that multimaps

have nonempty values otherwise explicitly stated or obvious from the context.
The closure operation and graph of F are denoted by F and GrF , respectively.

Let 〈D〉 denote the set of all nonempty finite subsets of a set D.
A generalized convex space or a G-convex space (X,D; Γ) consists of a topo-

logical space X and a nonempty set D such that for each A ∈ 〈D〉 with
the cardinality |A| = n + 1, there exist a subset Γ(A) of X and a contin-
uous map φA : ∆n → Γ(A) such that J ∈ 〈A〉 implies φA(∆J ) ⊂ Γ(J).
Here, ∆n is the standard n-simplex with vertices {ei}ni=0, and ∆J is the
face of ∆n corresponding to J ∈ 〈A〉; that is, if A = {a0, a1, . . . , an} and
J = {ai0 , ai1 , . . . , aik} ⊂ A, then ∆J = co{ei0 , ei1 , . . . , eik}. For details on
G-convex spaces, see [4, 8, 9, 14, 15, 16].

A semilattice is a partially ordered set X , with the partial ordering denoted
by ≤, for which any pair (x, x′) of elements has a least upper bound, denoted
by x ∨ x′. Any nonempty set A ∈ 〈X〉 has a least upper bound, denoted
by supA. In a partially ordered set (X,≤), two arbitrary elements x and
x′ do not have to be comparable, but, in the case where x ≤ x′, the set
[x, x′] = {y ∈ X : x ≤ y ≤ x′} is called an order interval.

The following is due to Horvath and Ciscar [2]: Let (X,≤) be a semilattice
with path-connected intervals such that for each A ∈ 〈X〉, ∆(A) is defined by⋃

a∈A[a, sup A]. Then
(1) ∆(A) is well defined;
(2) A ⊂ ∆(A);
(3) if A ⊂ B, then ∆(A) ⊂ ∆(B).

The following is due to Park [8, Lemma 2]:

Proposition 1.1. Any topological semilattice (X,∆) with path-connected in-

tervals is a G-convex space. More precisely, let D be a nonempty subset of X
and Γ : 〈D〉 ⊸ X a map such that Γ(A) = ∆(A) for each A ∈ 〈X〉. Then

(X,D; ∆) is a G-convex space.

A subset C ⊂ X is ∆-convex if for any A ∈ 〈C ∩ D〉, we have ∆(A) ⊂ C.
This notion is the same of Luo [6]. One can see that C is ∆-convex if and only
if for all x1, x2 ∈ C, then

⋃
i=1,2[xi, x1 ∨ x2] ⊂ C.

The following notion is due to Park [10].

An abstract convex space (X,D; Γ) consists of a topological space X , a non-
empty set D, and a multimap Γ : 〈D〉 ⊸ X with nonempty values ΓA := Γ(A)
for A ∈ 〈D〉.
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For any nonempty D′ ⊂ D, the Γ-convex hull of D′ is denoted and defined
by

coΓD
′ :=

⋃
{ΓA|A ∈ 〈D′〉} ⊂ X.

A subset X ′ of X is called a Γ-convex subset of (X,D; Γ) relative to D′ if
for any N ∈ 〈D′〉, we have ΓN ⊂ X ′, that is, coΓD

′ ⊂ X ′.
When D ⊂ X in (X,D; Γ), a subset X ′ of X is said to be Γ-convex if

coΓ(X
′ ∩ D) ⊂ X ′; in other words, X ′ is Γ-convex relative to D′ := X ′ ∩ D.

When D ⊂ X , the space is denoted by (X ⊃ D; Γ) and in case X = D,
let (X ; Γ) := (X,X ; Γ). If X is compact, then (X,D; Γ) is called a compact

abstract convex space.
Known examples of abstract convex spaces are given in Park [10, 12] and

the references therein. Note that G-convex spaces and topological semilattices
are abstract convex spaces. Any ∆-convex subset of a topological semilattice
(X,D; ∆) is Γ-convex.

Let (X,D; Γ) be an abstract convex space. If a map F : D ⊸ X satisfies
ΓA ⊂ F (A) for all A ∈ 〈D〉, then F is called a KKM map.

The following is in Park [10, Lemma 1]:

Proposition 1.2. For an abstract convex space (X,D; Γ) and a nonempty

subset D′ of D, let X ′ be a Γ-convex subset of X relative to D′ and Γ′ : 〈D′〉 ⊸
X ′ a map defined by Γ′

A := ΓA ⊂ X ′ for A ∈ 〈D′〉. Then (X ′, D′; Γ′) itself is

an abstract convex space called a subspace relative to D′.

The partial KKM principle for an abstract convex space (X,D; Γ) is the
statement that, for any closed-valued KKM map F : D ⊸ X , the family
{F (z)}z∈D has the finite intersection property. The KKM principle is the state-
ment that the same property also holds for any open-valued KKM map. An
abstract convex space is called a KKM space if it satisfies the KKM principle.

Known examples of KKM spaces are given in [11, 12] and the references
therein. Note that a topological semilattice (X,∆) with path-connected inter-
vals is also a KKM space.

2. Generalized KKM maps and its analytic formulations

Motivated by Kassay and Kolumbán [3], we define generalized KKM maps
on abstract convex spaces as follows: Let (X,D; Γ) be an abstract convex space
and I a nonempty set. A map F : I ⊸ X is called a generalized KKM map

provided that for each N ∈ 〈I〉, there exists a function σ : N → D such that
Γσ(M) ⊂ F (M) for each M ∈ 〈N〉. If σ is an identity function on D, then F is
a KKM map.

Theorem 2.1. Let I be a nonempty set, (X,D; Γ) an abstract convex space

satisfying the partial KKM principle, and F : I ⊸ X a multimap satisfying

(2.1.1) F is a generalized KKM map.

Then {F (z)}z∈I has the finite intersection property.
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Further, if

(2.1.2) there exists a nonempty compact subset K of X such that
⋂

z∈M F (z)
⊂ K for some M ∈ 〈I〉.

Then K ∩
⋂
{F (z) | z ∈ I} 6= ∅.

Proof. For each N ∈ 〈I〉, there is a function σ : N → D such that Γσ(M) ⊂

F (M) for all M ∈ 〈N〉. Let D′ = σ(N), then (X,D′; Γ) is an abstract convex
space satisfying the partial KKM principle. Define a map F ′ : D′

⊸ X by
F ′(x) =

⋂
σ(z)=x F (z) for all x ∈ D′. For all z ∈ I such that σ(z) = x,

Γ{x} = Γ{σ(z)} ⊂ F (z), so F ′(x) 6= ∅. For any J ∈ 〈D′〉 and M ∈ 〈N〉 satisfying

σ(M) = J , Γ′
J = ΓJ = Γσ(M) ⊂ F (M). Therefore Γ′

J ⊂
⋂

σ(M)=J F (M) =
⋂

σ(M)=J

⋃
z∈M F (z) =

⋃
x∈J

⋂
σ(z)=x F (z) = F ′(J). So F ′ is a KKM map on

(X,D′; Γ) and therefore
⋂

z∈N F (z) =
⋂

x∈D′ F ′(x) 6= ∅.

Since {F (z) | z ∈ D} has the finite intersection property, so does {K ∩

F (z) | z ∈ D} in the compact set K. Hence it has the whole intersection
property. �

Consider the following related three conditions for F : I ⊸ X ;
(a)

⋂
z∈I F (z) =

⋂
z∈I F (z) (F is intersectionally closed-valued [5]).

(b)
⋂

z∈I F (z) =
⋂

z∈I F (z) (F is transfer closed-valued).
(c) F is closed-valued.
Luc et al. [5] noted that (c) =⇒ (b) =⇒ (a).
From Theorem 2.1, we obtain the following KKM type theorem:

Theorem 2.2. Let I be a nonempty set, (X,D; Γ) an abstract convex space

satisfying the partial KKM principle, and F : I ⊸ X a map satisfying condi-

tions (2.1.1) and (2.1.2). Then

(α) If F is transfer closed-valued, then K ∩
⋂

z∈I F (z) 6= ∅.
(β) If F is intersectionally closed-valued, then

⋂
z∈I F (z) 6= ∅.

Proof. Since F is a generalized KKM map with closed values, by Theorem 2.1,
we have K ∩

⋂
z∈I F (z) 6= ∅.

(α) F is transfer closed-valued, so we have

K ∩
⋂

z∈I

F (z) = K ∩
⋂

z∈I

F (z) 6= ∅.

(β) Since F is intersectionally closed-valued, we have
⋂

z∈I

F (z) =
⋂

z∈I

F (z) 6= ∅.
�

From now on, we just focus on intersectionally closed-valued maps in this
section.

From Theorem 2.2, we obtain the following:
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Corollary 2.3. Let X be a topological semilattice with path-connected intervals,

I a nonempty set, D a nonempty subset of X and F : I ⊸ X a map. Suppose

that there exists a nonempty compact subset K of X such that

(1) F is intersectionally closed-valued;
(2) for each N ∈ 〈I〉, there exists a function σ : N → D such that⋃

x∈σ(M)[x, sup σ(M)] ⊂ F (M) for each M ∈ 〈N〉; and

(3)
⋂

z∈M F (z) ⊂ K for some M ∈ 〈I〉.

Then
⋂

z∈I F (z) 6= ∅.

Proof. Note that
⋃

x∈σ(M)[x, supσ(M)] = ∆(σ(M)), that is, (2) implies that

F is a generalized KKM map. By Theorem 2.2, the conclusion holds. �

For the identity map σ, Corollary 2.3 extends Horvath and Ciscar [2, The-
orem 2], Park [8, Theorem 8], and Luo [6, Theorem 2.2].

It is well-known that the KKM theory has many applications to equilibrium
problems. Some applicability of our results are based on the fact that gen-
eralized KKM maps are closely related to certain convexity (or concavity) of
extended real-valued functions.

Let I be a nonempty set, (X,D; Γ) an abstract convex space, and f : I×X →
R, g : X × I → R functions. Let γ ∈ R. We say that

f is generalized γ-quasiconcave in the first variable z ∈ I if for each N ∈
〈I〉, there exists a function σ : N → D such that ∅ 6= M ⊂ N implies γ ≥
minz∈M f(z, x) for all x ∈ Γσ(M).

For X = I = D and the identity map σ, our generalized γ-quasiconcavity
reduces to ordered γ-diagonal quasiconcavity due to Luo [7].

As in Park and Lee [17, Theorem 6] for G-convex spaces, the following
equivalency of certain concavity of extended real functions and the related
generalized KKM maps also holds for abstract convex spaces:

Proposition 2.4. Let I be a nonempty set, (X,D; Γ) an abstract convex space,

f : I ×X → R, and γ ∈ R. Then the followings are equivalent:
(1) The multimap F : I ⊸ X, defined by F (z) = {x ∈ X : f(z, x) ≤ γ} for

all z ∈ I, is a generalized KKM map.

(2) f is generalized γ-quasiconcave in the first variable z.

From Proposition 2.4, we obtain the following equilibrium result:

Theorem 2.5. Let I be a nonempty set, (X,D; Γ) an abstract convex space

satisfying the partial KKM principle, f : I ×X → R, and γ ∈ R. Suppose that

there exists a nonempty compact subset K of X such that

(2.5.1) for each z ∈ I, {x ∈ X | f(z, x) ≤ γ} is intersectionally closed;
(2.5.2) f is generalized γ-quasiconcave in the first variable z; and

(2.5.3) there exists a set M ∈ 〈I〉 such that
⋂

z∈M {x ∈ X | f(z, x) ≤ γ} ⊂ K.

Then there exists an x0 ∈ X such that f(z, x0) ≤ γ for all z ∈ I.
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Proof. Let us define a map F : I ⊸ X by F (z) = {x ∈ X | f(z, x) ≤ γ} for
z ∈ I. Then, by (2.5.1), F is intersectionally closed-valued. By Proposition
2.4, (2.5.2) implies that F is a generalized KKM map and so is F . Therefore,
by Theorem 2.2,

⋂
z∈I F (z) 6= ∅. Hence there exists an x0 ∈ X such that

x0 ∈ F (z) or f(z, x0) ≤ γ for all z ∈ I. This completes our proof. �

IfX is a topological semilattice with path-connected intervals, then Theorem
2.5 reduces to the following:

Corollary 2.6. Let X be a topological semilattice with path-connected intervals,

I a nonempty set, D a nonempty subset of X, f : I × X → R, and γ ∈ R.

Suppose that there exists a nonempty compact subset K of X such that

(1) for each z ∈ I, {x ∈ X | f(z, x) ≤ γ} is intersectionally closed;
(2) f is generalized γ-quasiconcave in the first variable z; and

(3) there exists a set M ∈ 〈I〉 such that
⋂

z∈M {x ∈ X | f(z, x) ≤ γ} ⊂ K.

Then there exists an x0 ∈ X such that f(z, x0) ≤ γ for all z ∈ I.

Remarks. 1. If {x ∈ X | f(z, x) ≤ γ} is transfer closed for each z ∈ I, then
there exists an x0 ∈ K such that f(z, x0) ≤ γ for all z ∈ I by Theorem 2.2.

2. Note that if f(z, x) is SPT l.s.c. relative to z (that is, X = I and
for each (z, x) ∈ X × X and for all ǫ > 0, there exist an x0 ∈ X and an
open neighborhood N(z) of z ∈ X such that for any z′ ∈ N(z), f(z, x) <
f(z′, x0) + ǫ), then for each z ∈ I, {x ∈ X | f(z, x) ≤ γ} is transfer closed;, so
Corollary 2.6 is a far-reaching generalization of Luo [6, Theorem 3.1] and [7,
Theorem 4.1].

The following is another whole intersection property in Park [13, Theorem
5.1];

Theorem 2.7. Let (X,D; Γ) be an abstract convex space satisfying the partial

KKM principle, K a nonempty compact subset of X and F : D ⊸ X an

intersectionally closed-valued map. Suppose that there exists a map G : X ⊸ X
such that

(2.7.1) for each z ∈ X, z ∈ G(z);
(2.7.2) for each y ∈ X, coΓ(D\F−(y)) ⊂ X\G−(y); and
(2.7.3) either

(i)
⋂

z∈N F (z) ⊂ K for some N ∈ 〈D〉; or
(ii) for each N ∈ 〈D〉, there exists a compact Γ-convex subset LN of X

relative to some D′ ⊂ D such that N ⊂ D′, (LN , D′; Γ′) satisfies the

partial KKM principle and LN ∩
⋂

z∈D′ F (z) ⊂ K.

Then
⋂
{F (z) : z ∈ D} 6= ∅.

Corollary 2.8. Let X be a topological semilattice with path-connected intervals,

D a nonempty subset of X, K a nonempty compact subset of X, and F :
D ⊸ X an intersectionally closed-valued map. Suppose that there exists a map

G : X ⊸ X satisfying (2.7.1) such that
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(1) for each y ∈ X, M ∈ 〈D\F−(y)〉 implies
⋃

a∈M [a, supM ] ⊂ X\G−(y);
and

(2) either

(i)
⋂

z∈N F (z) ⊂ K for some N ∈ 〈D〉; or
(ii) for each N ∈ 〈D〉, there exists a compact ∆-convex subset LN of X

containing N such that LN ∩
⋂

z∈LN∩D F (z) ⊂ K.

Then
⋂

z∈D F (z) 6= ∅.

We now deduce a generalization of Ky Fan’s section theorem:

Theorem 2.9. Let (X,D; Γ) be an abstract convex space satisfying the partial

KKM principle, B ⊂ X ×X and C ⊂ D ×X. Suppose that

(2.9.1) for each z ∈ D, {y ∈ X : (z, y) ∈ C} is intersectionally closed in X ;
(2.9.2) for any z ∈ X, (z, z) ∈ B;
(2.9.3) for each y ∈ X and M ∈ 〈{z ∈ D : (z, y) /∈ C}〉, we have ΓM ⊂ {z ∈

X : (z, y) /∈ B}; and
(2.9.4) there exists a nonempty compact subset K of X such that either

(i)
⋂

z∈N {y ∈ X : (z, y) ∈ C} ⊂ K for some N ∈ 〈D〉; or
(ii) for each N ∈ 〈D〉, there exists a compact Γ-convex subset LN of X

relative to some D′ ⊂ D such that N ⊂ D′, (LN , D′; Γ′) satisfies the

partial KKM principle and LN ∩
⋂

z∈D′ {y ∈ X : (z, y) ∈ C} ⊂ K.

Then there exists a y0 ∈ X such that D × {y0} ⊂ C.

Proof. For each z ∈ D, let

F (z) = {y ∈ X : (z, y) ∈ C},

which is intersectionally closed by (2.9.1). Moreover, for each z ∈ X , let
G(z) = {y ∈ X : (z, y) ∈ B}, then (2.9.2) and (2.9.3) imply (2.7.1) and
(2.7.2). Since (2.9.4) clearly implies (2.7.3), F satisfies all of the requirements
of Theorem 2.7. Therefore, we have

⋂
{F (z) : z ∈ D} 6= ∅.

Hence, there exists a y0 ∈ X such that y0 ∈
⋂
{F (z) : z ∈ D}; that is,

D × {y0} ⊂ C. �

Corollary 2.10. Let X be a topological semilattice with path-connected inter-

vals, D a nonempty subset of X, B ⊂ X ×X, and C ⊂ D ×X. Suppose that

there exists a nonempty compact subset K of X such that

(1) for each z ∈ D, {y ∈ X : (z, y) ∈ C} is intersectionally closed in X ;
(2) for any z ∈ X, (z, z) ∈ B;
(3) for each y ∈ X and M ∈ 〈{z ∈ D : (z, y) /∈ C}〉, we have⋃

a∈M [a, supM ] ⊂ {z ∈ X : (z, y) /∈ B}; and
(4) either

(i)
⋂

z∈N {y ∈ X : (z, y) ∈ C} ⊂ K for some N ∈ 〈D〉; or
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(ii) for each N ∈ 〈D〉, there exists a compact ∆-convex subset LN of X

containing N such that LN ∩
⋂

z∈LN∩D {y ∈ X : (z, y) ∈ C} ⊂ K.

Then there exists a y0 ∈ X such that D × {y0} ⊂ C.

Luo [7, Theorem 2.1] is a particular case of Corollary 2.10.
Let X and Y be two topological spaces. A multimap F : X ⊸ Y is said

to be unionly open-valued (resp., transfer open-valued) on X if and only if
the multimap G : X ⊸ Y , defined by G(x) = Y \F (x) for every x ∈ X , is
intersectionally closed-valued (resp., transfer closed-valued) on X . See Luc et
al. [5] and Tian [18].

The following form of Theorem 2.9 is a generalization of Ky Fan’s Lemma
which is also widely used in the KKM theory:

Theorem 2.11. Let (X,D; Γ) be an abstract convex space satisfying the partial

KKM principle, K a nonempty compact subset of X, B ⊂ X × X, and C ⊂
D ×X. Suppose that

(2.11.1) for each z ∈ D, {y ∈ X : (z, y) ∈ C} is unionly open in X ;
(2.11.2) for each y ∈ X and M ∈ 〈{z ∈ D : (z, y) ∈ C}〉, we have ΓM ⊂ {z ∈

X : (z, y) ∈ B};
(2.11.3) for each y ∈ X, there exists a z ∈ D such that (z, y) ∈ C; and
(2.11.4) either

(i)
⋂

z∈N {y ∈ X : (z, y) /∈ C} ⊂ K for some N ∈ 〈D〉; or
(ii) for each N ∈ 〈D〉, there exists a compact Γ-convex subset LN of X

relative to some D′ ⊂ D such that N ⊂ D′, (LN , D′; Γ′) satisfies the

partial KKM principle and LN ∩
⋂

z∈D′ {y ∈ X : (z, y) /∈ C} ⊂ K.

Then there exists a z0 ∈ X such that (z0, z0) ∈ B.

Proof. Consider Theorem 2.9 with the complements (Bc, Cc) instead of (B,C).
Then (2.9.1), (2.9.3), and (2.9.4) are satisfied automatically. Since (2.11.3) is
the negation of the conclusion of Theorem 2.9, we should have the negation of
(2.9.2). Therefore, the conclusion follows. �

Corollary 2.12. Let X be a topological semilattice with path-connected inter-

vals, D a nonempty subset of X, B ⊂ X ×X, and C ⊂ D ×X. Suppose that

there exists a nonempty compact subset K of X such that

(1) for each z ∈ D, {y ∈ X : (z, y) ∈ C} is unionly open in X ;
(2) for each y ∈ X and M ∈ 〈{z ∈ X : (z, y) ∈ C}〉, we have⋃

a∈M [a, supM ] ⊂ {z ∈ X : (z, y) ∈ B};
(3) for each y ∈ X, there exists a z ∈ D such that (z, y) ∈ C; and
(4) either

(i)
⋂

z∈N {y ∈ X : (z, y) /∈ C} ⊂ K for some N ∈ 〈D〉; or
(ii) for each N ∈ 〈D〉, there exists a compact ∆-convex subset LN of X

containing N such that LN ∩
⋂

z∈LN∩D {y ∈ X : (z, y) /∈ C} ⊂ K.

Then there exists a z0 ∈ X such that (z0, z0) ∈ B.
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Corollary 2.12 extends Luo [7, Theorem 2.3].
The following is a fixed point theorem for an abstract convex space satisfying

the partial KKM principle in Park [13, Theorem 5.4]:

Theorem 2.13. Let (X,D; Γ) be an abstract convex space satisfying the partial

KKM principle, and S : D ⊸ X, T : X ⊸ X maps. Suppose that

(2.13.1) for each z ∈ D, S(z) is unionly open in X ;
(2.13.2) for each y ∈ X, coΓS

−(y) ⊂ T−(y);
(2.13.3) X = S(D); and
(2.13.4) there exists a nonempty compact subset K of X such that either

(i)
⋂

z∈N X\S(z) ⊂ K for some N ∈ 〈D〉; or
(ii) for each N ∈ 〈D〉, there exists a compact Γ-convex subset LN of X

relative to some D′ ⊂ D such that N ⊂ D′, (LN , D′; Γ′) satisfies the

partial KKM principle and LN ∩
⋂

z∈D′ X\S(z) ⊂ K.

Then there exists a z̄ ∈ X such that z̄ ∈ T (z̄).

Corollary 2.14. Let X be a topological semilattice with path-connected inter-

vals, D a nonempty subset of X, and S : D ⊸ X, T : X ⊸ X maps. Suppose

that

(1) for each z ∈ D, S(z) is unionly open in X ;
(2) for each y ∈ X, M ∈ 〈S−(y)〉 implies

⋃
a∈M [a, supM ] ⊂ T−(y);

(3) X = S(D); and
(4) there exists a nonempty compact subset K of X such that either

(i)
⋂

z∈N X\S(z) ⊂ K for some N ∈ 〈D〉; or
(ii) for each N ∈ 〈D〉, there exists a compact ∆-convex subset LN of X

containing N such that LN ∩
⋂

z∈LN∩D X\S(z) ⊂ K.

Then there exists a z̄ ∈ X such that z̄ ∈ T (z̄).

Corollary 2.14 extends Horvath and Ciscar [2, Corollary 1] and Luo [6, The-
orem 3.2], [7, Theorem 2.4].

3. Maximal elements

The (weak or strict) preference relation is defined on Z and is a subset of
Z × Z. Here Z may be considered as a consumption space. Let � be the weak

preference relation. An element (x, y) ∈ � is written as x � y and read as “x
is at least as good as y”. Let ≻ be the strict preference relation. An element
(x, y) ∈ ≻ is written as x ≻ y and read as “x is strictly preferred to y”. We
may think x ≻ y if and only if x � y and x 6= y. For each x, the weakly upper,
weakly lower, strictly upper, and strictly lower contour sets (or sections) of x
are denoted by Uw(x) = {y ∈ Z | y � x}, Lw(x) = U−

w (x) = {y ∈ Z |x � y},
Us(x) = {y ∈ Z | y ≻ x}, and Ls(x) = {y ∈ Z |x ≻ y}, respectively.

In some cases, not all points in Z can be chosen. A subset B ⊂ Z is called
as a choice set which may be considered as the upper bound set for the feasible
set. A weak preference relation � is said to have a greatest element on the
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subset B of Z if there exists a point x∗ ∈ B such that x∗ � x for all x ∈ B, or
equivalently

⋂
x∈B Uw(x) ∩ B 6= ∅. The above x∗ is called a greatest element.

A strict preference relation ≻ is said to have a maximal element on the subset

B of Z if there exists a point x∗ ∈ B such that for any x ∈ B, x ≻ x∗ does not
hold; that is Us(x

∗) ∩B = ∅. This x∗ is called a maximal element.
The following theorem shows the existence of a greatest element for the weak

preference relation:

Theorem 3.1. Let (Z ⊃ B; Γ) be an abstract convex space satisfying the partial

KKM principle, and � a weak preference relation defined on Z. Suppose that

there exists a nonempty compact subset K of Z such that

(3.1.1) Uw is transfer closed valued on B;
(3.1.2) Uw is GFS-convex on B, that is, if for every N ∈ 〈B〉, there exists a

function σ : N → B such that for any M ⊂ N , Γσ(M) ⊂ Uw(M); and

(3.1.3)
⋂

z∈M Uw(z) ⊂ B ∩K for some M ∈ 〈B〉.

Then � has a greatest element on B.

Proof. Define a map F : B ⊸ Z by F (x) := Uw(x) for each x ∈ B. Then (3.1.2)
shows that F is a generalized KKM map. Using the proof of Theorem 2.1 and
Theorem 2.2, we can deduce that B ∩ (

⋂
x∈B F (x)) = B ∩ (

⋂
x∈B Uw(x)) 6=

∅. �

If σ is the identity function, GFS-convex is called FS-convex by Tian [18].
If Z is a topological semilattice with path-connected intervals, the following

holds:

Corollary 3.2. Let Z be a topological semilattice with path-connected intervals,

B a choice set, and � a weak preference relation defined on Z. Suppose that

there exists a nonempty compact subset K of Z such that

(1) Uw is transfer closed valued on B;
(2) for every N ∈ 〈B〉, there exists a function σ : N → B such that for

any M ⊂ N ,
⋃

x∈σ(M)[x, supσ(M)] ⊂ Uw(M); and

(3)
⋂

z∈M Uw(z) ⊂ B ∩K for some M ∈ 〈B〉.

Then � has a greatest element on B.

Theorem 3.3. Let (Z ⊃ B; Γ) be an abstract convex space satisfying the partial

KKM principle and ≻ a strict preference relation on Z. Suppose that there

exists a nonempty compact subset K of Z such that

(3.3.1) Ls is open-valued on B;
(3.3.2) Us is a GSS-map, that is, if, for every N ∈ 〈B〉, there exists a function

σ : N → B such that for any M ⊂ N and x0 ∈ Γσ(M), xj /∈Us(x0) for

some xj ∈ M ; and
(3.3.3)

⋂
x∈M {y ∈ Z |x 6≻ y} ⊂ K ∩B for some M ∈ 〈B〉.

Then ≻ has a maximal element on B.
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Proof. Let F (x) = Z\Ls(x). Then the set of maximal element is {y ∈ B |Us(y)
∩B = ∅} = {y ∈ B |x 6≻ y for all x ∈ B} = B ∩

⋂
x∈B F (x). Since F is closed-

valued by (3.3.1), we need to show that F is a generalized KKM map. Suppose
to the contrary, for some M ∈ 〈B〉, and for every σ : M → B, there exists a
point x0 ∈ Γσ(M) which is not in F (xj) = Z\Ls(xj) for all xj ∈ M . Then x0 ∈
Ls(xj), so xj ∈ Us(x0) for all xj ∈ M , which contradict (3.3.2). So we can
conclude B ∩

⋂
x∈B F (x) 6= ∅ from Theorem 2.1. So there exists an x∗ ∈ B

such that Us(x
∗) ∩B = ∅. �

The following is a simple consequence of Theorem 3.3:

Corollary 3.4. Let Z be a topological semilattice with path-connected intervals,

B a choice set, and ≻ a strict preference relation on Z. Suppose that there exists

a nonempty compact subset K of Z such that

(1) Ls is open-valued on B;
(2) for every N ∈ 〈B〉, there exists a function σ : N → B such that for any

M ⊂ N and x0 ∈
⋃

x∈σ(M)[x, supσ(M)], xj /∈Us(x0) for some xj ∈ M ;

and

(3)
⋂

x∈M {y ∈ Z |x 6≻ y} ⊂ K ∩B for some M ∈ 〈B〉.

Then ≻ has a maximal element on B.

4. Collectively fixed point theorems

Park [9] deduced general collectively fixed point theorems for a family of
Browder type maps on the product of generalized convex spaces. Using his
methods and relaxing his conditions, we obtain more general results on the
product of KKM spaces.

Let {Xi}i∈I be a family of sets, and let i ∈ I be fixed. Let

X =
∏

j∈I

Xj , X i =
∏

j∈I\{i}

Xj

and xi = πi(x) denote the projection of x in Xi.
The following is in Park [11, Theorem 5.2]:

Proposition 4.1. Let (X,D; Γ) be a KKM space, and S : X ⊸ D, T : X ⊸ X
maps satisfying

(1) S− has open [resp., closed ] values;
(2) for each y ∈ X, coΓS(y) ⊂ T (y); and
(3) X = S−(N) for some N ∈ 〈D〉.

Then there exists a z̄ ∈ X such that z̄ ∈ T (z̄).

The following is a collective fixed point theorem:

Theorem 4.2. Let {(Xi, Di; Γi)}i∈I be a family of KKM spaces, X =
∏

i∈I Xi,

and for each i ∈ I, Di a finite set. Suppose Si : X ⊸ Di and Ti : X ⊸ Xi are

multimaps such that
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(4.2.1) for each zi ∈ Di, S
−
i (zi) is open [resp., closed ] in X ;

(4.2.2) for each y ∈ X, M ∈ 〈Si(y)〉 implies Γi(M) ⊂ Ti(y); and
(4.2.3) X =

⋃
{S−

i (zi) : zi ∈ Di}.

Then there exists a z̄ ∈ X such that z̄ ∈ T (z̄) :=
∏

i∈I Ti(z̄); that is, zi =
πi(z̄) ∈ Ti(z̄) for each i ∈ I.

Proof. Choose a point a = [ai, ai] ∈ X (here, we always assume that each Xi

is nonempty). For each i ∈ I, define a function Ji : Xi → X by xi 7→ [ai, xi]
for each i ∈ I. Then each Ji is an embedding. For each i ∈ I, define S′

i :=
Si ◦ Ji : Xi ⊸ Di and T ′

i := Ti ◦ Ji : Xi ⊸ Xi. Then for each i ∈ I, we obtain
the following:

(1) For each zi ∈ Di, (S
′
i)

−(zi) = (Si◦Ji)−(zi) = J−1
i (S−

i (zi)) is open [resp.,
closed] since so is S−

i (zi) by (4.2.1) and Ji is continuous.
(2) For each xi ∈ Xi, M ∈ 〈S′

i(xi)〉 implies Γi(M) ⊂ T ′
i (xi). In fact,

S′
i(xi) = (Si ◦ Ji)(xi) = Si[a

i, xi] and M ∈ 〈S′
i(xi)〉 imply Γi(M) ⊂ Ti[a

i, xi]
by (4.2.2). Note that Ti[a

i, xi] = (Ti ◦ Ji)(xi) = T ′
i (xi).

(3) Xi =
⋃
{(S′

i)
−(zi) : zi ∈ Di}. In fact, for any xi ∈ Xi, we have Ji(xi) =

[ai, xi] ∈ X =
⋃
{S−

i (zi) : zi ∈ Di} by (4.2.3). Hence Ji(xi) ∈ S−
i (zi) for some

zi ∈ Di, and xi ∈ (J−1
i ◦ S−

i )(zi) = (S′
i)

−(zi).
Now we apply Proposition 4.1 for (Xi, Di; Γi), then T ′

i has a fixed point
bi ∈ Xi; that is, bi ∈ T ′

i (bi) = (Ti ◦ Ji)(bi) = Ti[a
i, bi]. Let b = [bi, bi] ∈ X . It

should be noted that the above argument holds for any point a ∈ X . Therefore,
we may choose a = b. then, we have bi ∈ Ti[b

i, bi] = Ti(b) and hence b ∈ T (b) =∏
i∈I Ti(b), and bi = π(b) ∈ Ti(b). This completes our proof. �

Corollary 4.3. For each i ∈ I, let Xi be a topological semilattice with path-

connected intervals, X =
∏

i∈I Xi, Di a finite subset of Xi, and Si : X ⊸ Di,

Ti : X ⊸ Xi multimaps such that

(1) for each zi ∈ Di, S
−
i (zi) is open [resp., closed ] in X ;

(2) for each y ∈ X, M ∈ 〈Si(y)〉 implies
⋃

zi∈M [zi, supM ] ⊂ Ti(y); and

(3) X =
⋃
{S−

i (zi) : zi ∈ Di}.

Then there exists a z̄ ∈ X such that z̄ ∈ T (z̄) :=
∏

i∈I Ti(z̄).

For a topological spaceX and an abstract convex space (Y,D; Γ), a multimap
T : X ⊸ Y is called a Φ-map provided that there exists a multimap S : X ⊸ D
satisfying

(a) for each x ∈ X , M ∈ 〈S(x)〉 implies ΓM ⊂ T (x); and
(b) X =

⋃
{Int S−(y) : y ∈ D}.

The following is a particular form of Theorem 4.2:

Theorem 4.4. Let {(Xi, Di; Γi)}i∈I be a family of compact KKM spaces, X =∏
i∈I Xi, and for each i ∈ I, Ti : X ⊸ Xi a Φ-map. Then there exists a z̄ ∈ X

such that z̄ ∈ T (z̄) :=
∏

i∈I Ti(z̄).

Proof. Since Ti is a Φ-map, for each i ∈ I, there exists a companion map Si :
X ⊸ Di such that X =

⋃
{IntS−

i (zi) : zi ∈ Di}. Since X is compact, there
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exists a D′
i ∈ 〈Di〉 such that X =

⋃
{IntS−

i (zi) : zi ∈ D′
i} for each i ∈ I. Then

(Xi, D
′
i; Γ

′
i), where Γ

′
i := Γi|〈D′

i〉, is a KKM space. Now we can apply Theorem
4.2 to obtain the conclusion. �

Corollary 4.5. For each i ∈ I, let Xi be a compact topological semilattice with

path-connected intervals, Di a subset of Xi, X =
∏

i∈I Xi and for each i ∈ I,
Ti : X ⊸ Xi a Φ-map. Then there exists a z̄ ∈ X such that z̄ ∈ T (z̄) :=∏

i∈I Ti(z̄).

Theorem 4.6. Let {(Xi, Di; Γi)}i∈I be a family of KKM spaces, X =
∏

i∈I Xi,

and for each i ∈ I, Si : X ⊸ Di and Ti : X ⊸ Xi multimaps satisfying the

conditions

(4.6.1) for each zi ∈ Di, S
−
i (zi) is open [resp., closed ] in X ;

(4.6.2) for each y ∈ X, M ∈ 〈Si(y)〉 implies Γi(M) ⊂ Ti(y).

Suppose that

(a) there exists a nonempty subset K of X such that K ⊂
⋃

zi∈Ni
S−
i (zi)

for some Ni ∈ 〈Di〉;
(b) if X 6= K, then there exists a Γ-convex subset LNi

of (Xi, Di; Γi) rel-

ative to some D′
i ⊂ Di such that Ni ⊂ D′

i, (LNi
, D′

i; Γ
′
i) satisfies the

KKM principle and for L :=
∏

i∈I LNi
, we have L\K ⊂

⋃
zi∈Mi

S−
i (zi)

for some Mi ∈ 〈D′
i〉.

Then there exists a z̄ ∈ X such that z̄ ∈ T (z̄) :=
∏

i∈I Ti(z̄).

Proof. Note that

(∗) L ⊂ (L\K) ∪K ⊂
⋃

zi∈Mi∪Ni

S−
i (zi),

and Mi ∪ Ni ∈ 〈Di〉 for each i ∈ I, and (LNi
,Mi ∪ Ni; Γ

′
i) is a KKM space,

where Γ′
i = Γi|〈Mi ∪Ni〉.

Now, for each i ∈ I, define S′
i : L ⊸ Mi ∪Ni and T ′

i : L ⊸ LNi
by

S′
i(x) := Si(x) ∩ (Mi ∪Ni) and T ′

i (x) := Ti(x) ∩ LNi
for x ∈ L.

By (∗), for each x ∈ L, there exists a zi ∈ Mi∪Ni such that zi ∈ Si(x), that
is, (Mi ∪ Ni) ∩ Si(x) 6= ∅. Hence S′

i(x) is nonempty for each x ∈ L. For each
x ∈ L, Γi(S

′
i(x)) ⊂ Ti(x) by (4.6.2) and Γ′

i(S
′
i(x)) = Γi(S

′
i(x)) ⊂ LNi

, since
LNi

is a Γ-convex subset relative to D′
i. So Γ′

i(S
′
i(x)) ⊂ T ′

i (x) for each x ∈ L.
We show that S′

i and T ′
i satisfy the requirements of Theorem 4.2 as follows:

(4.2.1) (S′
i)

−(zi) is open [resp., closed] for each zi ∈ Mi∪Ni. In fact, (S′
i)

−(zi) =
L ∩ (Si)

−(zi) is relatively open [resp., closed] in L.
(4.2.2) For each x ∈ L, M ∈ 〈S′

i(x)〉 implies Γ′
i(M) ⊂ T ′

i (x). In fact, M ∈
〈S′

i(x)〉 implies M ∈ 〈Si(x)〉 and M ⊂ Mi ∪Ni ⊂ Di. Then Γ′
i(M) = Γi(M) ⊂

Ti(x) by (4.6.2) and Γ′
i(M) = Γi(M) ⊂ LNi

, since LNi
is a Γ-convex subset

relative to D′
i. Therefore, Γ

′
i(M) ⊂ Ti(x) ∩ LNi

= T ′
i (x).
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(4.2.3) L =
⋃
{(S′

i)
−(zi) : zi ∈ Mi ∪Ni} for each i ∈ I. In fact, by (∗),

L = L
⋂ ⋃

zi∈Mi∪Ni

S−
i (zi) =

⋃

zi∈Mi∪Ni

(L ∩ S−
i (zi)) =

⋃

zi∈Mi∪Ni

(S′
i)

−(zi).

We apply Theorem 4.2 to (L,LNi
,Mi∪Ni, S

′
i, T

′
i ) instead of (X,Xi, Di, Si, Ti).

Then there exists a point z̄ ∈ L such that

z̄ ∈ T ′(z̄) :=
∏

i∈I

T ′
i (z̄) ⊂

∏

i∈I

Ti(z̄) = T (z̄).

�

Remarks. 1. Note that Di doesn’t need to be a subset of Xi. Compare it with
[9, Theorem 4].

2. A map T : X ⊸ Y is said to be transfer compactly open [resp., closed ]
valued on X if for every x ∈ X and for any compact subset of L of Y , T (x)∩L
is transfer open [resp., closed] valued in L. Theorem 4.6 can be proved not
only for transfer open [resp., closed] values of S−

i , but also transfer compactly
open [resp., transfer compactly closed] values of S−

i . The proof of those cases
are exactly same manners above.

Corollary 4.7. For each i ∈ I, let Xi be a topological semilattice with path-

connected intervals, X =
∏

i∈I Xi, Di a subset of Xi, and Si : X ⊸ Di,

Ti : X ⊸ Xi multimaps satisfying the conditions

(1) for each zi ∈ Di, S
−
i (zi) is open [resp., closed ] in X ;

(2) for each y ∈ X, M ∈ 〈Si(y)〉 implies
⋃

zi∈M [zi, supM ] ⊂ Ti(y).

Suppose that

(a) there exists a nonempty subset K of X such that K ⊂
⋃

zi∈Ni
S−
i (zi)

for some Ni ∈ 〈Di〉;
(b) if X 6= K, then there exists a ∆-convex subset LNi

of Xi containing

Ni such that, for L :=
∏

i∈I LNi
, we have L\K ⊂

⋃
zi∈Mi

S−
i (zi) for

some Mi ∈ 〈LNi
∩Di〉.

Then there exists a z̄ ∈ X such that z̄ ∈ T (z̄) :=
∏

i∈I Ti(z̄).

Remark. As we mentioned in Remarks of Theorem 4.6, we can also obtain fixed
points of T under the condition

(1)′ for each zi ∈ Di, S−
i (zi) is transfer compactly open [resp., transfer

compactly closed] in X .
So a generalization of Theorem 3.1 in [1] also can be obtained.

Theorem 4.8. Let {(Xi, Di; Γi)}i∈I be a family of KKM spaces, X =
∏

i∈I Xi,

and for each i ∈ I, Ti : X ⊸ Xi a Φ-map with the companion map Si : X ⊸

Di. Suppose that for each i ∈ I,

(4.8.a) there exists a nonempty subset K of X ;
(4.8.b) if X 6= K, for each Ni ∈ 〈Di〉 there exists a compact Γ-convex sub-

set LNi
of (Xi, Di; Γi) relative to some D′

i ⊂ Di such that Ni ⊂ D′
i,
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(LNi
, D′

i; Γ
′
i) satisfies the KKM principle and, for L :=

∏
i∈I LNi

, we

have

L\K ⊂
⋃

{IntS−
i (zi) : zi ∈ D′

i}.

Then there exists a z̄ ∈ X such that z̄ ∈ T (z̄) :=
∏

i∈I Ti(z̄).

Proof. Since Ti is a Φ-map and Si : X ⊸ Di a companion map of Ti, X =⋃
{IntS−

i (zi) : zi ∈ Di} for each i ∈ I. Since K is compact, for each i ∈ I, there
exists Ni ∈ 〈Di〉 such that K ⊂

⋃
{IntS−(zi) : zi ∈ Ni}. If X = K, then the

conclusion follows from Theorem 4.4. Suppose X 6= K, Then, for each i ∈ I ,
there exists a compact Γ-convex subset LNi

in (4.8.b) and L :=
∏

i∈I LNi
is

compact. Since

L = (L\K) ∪ (L ∩K) ⊂
⋃

zi∈D′

i

IntS−
i (zi) ∪

⋃

zi∈Ni

IntS−
i (zi),

L ⊂
⋃

zi∈Mi∪Ni
IntS−

i (zi) for some Mi ∈ 〈D′
i〉, we have

L\K ⊂
⋃

zi∈Mi

IntS−
i (zi).

Therefore the conclusion follows from Theorem 4.6. �

Corollary 4.9. For each i ∈ I, let Xi be a topological semilattice with path-

connected intervals, Di is subset of Xi, X =
∏

i∈I Xi and for each i ∈ I,
Ti : X ⊸ Xi is a Φ-map with the companion map Si : X ⊸ Di. Suppose that

for each i ∈ I,

(a) there exists a nonempty subset K of X ;
(b) if X 6= K, for each Ni ∈ 〈Di〉, there exists a compact ∆-convex subset

LNi
of Xi containing Ni such that, for L :=

∏
i∈I LNi

, we have

L\K ⊂
⋃

{IntS−
i (zi) : zi ∈ LNi

∩Di}.

Then there exists a z̄ ∈ X such that z̄ ∈ T (z̄) :=
∏

i∈I Ti(z̄).
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