• Title/Summary/Keyword: Job sequence

Search Result 129, Processing Time 0.029 seconds

A Study on Determining Job Sequence of Job Shop by Sampling Method (샘플링 기법(技法)에 의한 잡. 샵(Job Shop)의 작업순서(作業順序) 결정(決定))

  • Gang, Seong-Su;No, In-Gyu
    • Journal of Korean Society for Quality Management
    • /
    • v.17 no.1
    • /
    • pp.69-81
    • /
    • 1989
  • This study is concerned with a job sequencing method using the concept of sampling technique in the case of Job Shop. This is the follow study of Kang and Ro (1988) which examined the possibility of application of sampling technique to determine the Job Sequence in the case of Flow Shop. Not only it is very difficult, but also it takes too much time to develop the appropriate job schedules that satisfy the complex work conditions. The most job sequencing algorithms have been developed to determine the best or good solution under the special conditions or assumptions. The application areas of these algorithms are also very narrow, so it is very hard to find the appropriate algorithm which satisfy the complex work conditions. In this case it is very desirable to develop a simple job sequencing method which can select the optimal job sequence or near optimal job sequence with a little effort. This study is to examine the effect of sampling job sequencing which can select the good job of 0.01%~5% upper good group. The result shows that there is the sets of 0.05%~23% job sequence group which has the same amount of performance measure with the optimal job sequence in the case of experiment of N/M/G/$F_{max}$. This indicates that the sampling job sequencing method is a useful job sequencing method to find the optimal or good job sequence with consuming a small amount of time. The results of ANOVA show that the only one factor, number of machines is the significant factor for determining the job sequence at ${\alpha}=0.01$. It takes about 10 minutes to compare the number of 10,000 samples of job sequence by personal computer and it is proved that the selection rate of the same job sequence with optimal job sequence is 23.0%, 3.9% and 0.065% in the case of 2 machines, 3 machines and 4 machines, respectively. The area of application can readily be extended to the other work condition.

  • PDF

A Study on Determining of Job Sequence by Work Sampling(I) (W.S법에 의한 JOB SEQUENCE의 결정(I))

  • 강성수;노인규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.11 no.18
    • /
    • pp.59-69
    • /
    • 1988
  • This study represents the method of application of W.S(Work Sampling) to determine job sequence. The result shows job sequence which has the came performance measure of optimal job sequence is selected by average number of 199 sampling. In the case, the optimal job sequence is not selected within the sampling number of 921 which satisfy the reliability of 99.5% and precision of 99%, the deviation is very little which 0.73%. This improves the possibility of application of W.S method to select optimal job sequence is very high.

  • PDF

A Study on Determining Job Sequence by Sampling Method (II) (샘플링 기법에 의한 작업순서의 결정 (II))

  • 강성수;노인규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.12 no.19
    • /
    • pp.25-30
    • /
    • 1989
  • This study is concerned with a job sequencing method using the concept of sampling technique. This sampling technique has never been applied to develop the scheduling algorithms. The most job sequencing algorithms have been developed to determine the best or good solution under the special conditions. Thus, it is not only very difficult, but also taken too much time to develop the appropriate job schedules that satisfy the complex work conditions. The application areas of these algorithms are also very narrow. Under these circumstances it is very desirable to develop a simple job sequencing method which can produce the good solution with the short tine period under any complex work conditions. It is called a sampling job sequencing method in this study. This study is to examine the selection of the good job sequence of 1%-5% upper group by the sampling method. The result shows that there is the set of 0.5%-5% job sequence group which has to same amount of performance measure with the optimal job sequence in the case of experiment of 2/n/F/F max. This indicates that the sampling job sequencing method is a useful job sequencing method to find the optimal or good job sequence with a little effort and time consuming. The results of ANOVA show that the two factors, number of jobs and the range of processing time are the significant factors for determining the job sequence at $\alpha$=0.01. This study is extended to 3 machines to machines job shop problems further.

  • PDF

Dispatching Rule based on Chromaticity and Color Sequence Priorities for the Gravure Printing Operation (색도 및 색순에 따른 그라비아 인쇄 공정의 작업 순서 결정 규칙)

  • Bae, Jae-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.10-20
    • /
    • 2020
  • This paper presents a method to measure the similarity of assigned jobs in the gravure printing operation based on the chromaticity and color sequence, and order the jobs accordingly. The proposed dispatching rule can be used to fulfill diverse manufacturing site requirements because the parameters can be adjusted to prioritize chromaticity and color sequence. In general, dispatching rules either ignore the job-changing time or require that the time be clearly defined. However, in the gravure printing operation targeted in this study, it is difficult to apply the general dispatching rule because of the difficulties in quantifying the job-changing time. Therefore, we propose a method for generalizing assignment rules of the job planner, allocating relative similarity among assigned jobs, and determining the sequence of jobs accordingly. Chromaticity priority is determined by the arrangement of the color assignments in the printing operation; color sequence priority is determined by the addition, deletion, or change in a specific color sequence. Finally, the job similarity is determined by the dot product of the chromaticity and color sequence priorities. Implementation of the proposed dispatching rule at an actual manufacturing site showed the planner present the same job order as that obtained using the proposed rule. Therefore, this rule is expected to be useful in industrial sites where clear quantification of the job-changing time is not possible.

Scheduling of Production Process with Setup Cost depending Job Sequence (작업순서에 따라 달라지는 준비 비용을 갖는 PCB 생산 공정의 일정계획)

  • Yu, Sungyeol
    • Management & Information Systems Review
    • /
    • v.34 no.2
    • /
    • pp.67-78
    • /
    • 2015
  • In this paper, we consider a scheduling problem of printed circuit board production process with setup cost depending job sequence. Given a set of PCBs, these are produced in single surface mounting device. The problem is to define job sequence with the objective of minimizing the total seutp cost. We propose a mathematical formulation and the problem is proven to be NP-hard. So, a meta heuristic based on genetic algorithm is developed.

  • PDF

Minimizing the Weighted Mean Absolute Deviation of Job Completion Times about Two Common Due Dates (두개의 공통납기에 대한 작업완료시간의 W.M.A.D. 최소화에 관한 연구)

  • 오명진;이상도
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.14 no.24
    • /
    • pp.111-121
    • /
    • 1991
  • This paper considers a non preemtive single processor scheduling problem in which each set have the two common due dates. The objective of the problem is to minimize the weighted mean absolute deviation of job completion times about such two common due dates under the assumption that each job has a different weight. Such a job sequence is an W-shaped sequence. We propose three heuristic solution methods based on several dominance conditions. Numerical examples are presented. The performance comparison is made among three heuristic scheduling procedures.

  • PDF

Heuristics for Job Shop Scheduling Problems with Progressive Weighted Tardiness Penalties and Inter-machine Overlapping Sequence-dependent Setup Times

  • Mongkalig, Chatpon;Tabucanon, Mario T.;Hop, Nguyen Van
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.1-22
    • /
    • 2005
  • This paper presents new scheduling heuristics, namely Mean Progressive Weighted Tardiness Estimator (MPWT) Heuristic Method and modified priority rules with sequence-dependent setup times consideration. These are designed to solve job shop scheduling problems with new performance measures - progressive weighted tardiness penalties. More realistic constraints, which are inter-machine overlapping sequence-dependent setup times, are considered. In real production environments, inter-machine overlapping sequence-dependent setups are significant. Therefore, modified scheduling generation algorithms of active and nondelay schedules for job shop problems with inter-machine overlapping sequence-dependent setup times are proposed in this paper. In addition, new customer-based measures of performance, which are total earliness and progressive weighted tardiness, and total progressive weighted tardiness, are proposed. The objective of the first experiment is to compare the proposed priority rules with the consideration of sequence-dependent setup times and the standard priority rules without setup times consideration. The results indicate that the proposed priority rules with setup times consideration are superior to the standard priority rules without the consideration of setup times. From the second experiment and the third experiment to compare the proposed MPWT heuristic approach with the efficient priority rules with setup times consideration, the MPWT heuristic method is significantly superior to the Batched Apparent Tardiness Cost with Sequence-dependent Setups (BATCS) rule, and other priority rules based on total earliness and progressive weighted tardiness, and total earliness and tardiness.

Minimizing Total Flow Time for Multiple Parts and Assembly Flow Shop (복수의 부품 및 조립 흐름공정의 총흐름시간 최소화)

  • Moon, Gee-Ju;Lee, Jae-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.82-88
    • /
    • 2011
  • A typical job sequencing problem is studied in this research to improve productivities in manufacturing companies. The problem consists of two-stage parts and assembly processes. Two parts are provided independently each other and then two sequential assembly processes are followed. A new heuristic is developed to solve the new type of sequencing problem. Initial solution is developed in the first stage and then the initial solution is improved in the second stage. In the first stage, a longer part manufacturing time for each job is selected between two, and then a sequence is determined by descending order of the times. This initial sequence is compared with Johnson's sequence obtained from 2-machine assembly times. Any mismatches are tried to switch as one possible alternative and completion time is calculated to determine whether to accept the new sequence or not to replace the current sequence. Searching process stops if no more improvement can be made.

Job Sequencing Problem for Three-Machine Flow Shop with Fuzzy Processing Times

  • Park, Seunghun;Chang, Inseong;Gen, Mitsuo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.1
    • /
    • pp.139-157
    • /
    • 1993
  • This paper presents possibilistic job scheduling based on the membership function as an alternative to probabilistic job scheduling and illustrates a methodology for solving job sequencing problem which the opinions of experts greatly disagree in each processing time. Triangular fuzzy numbers are used to represent the processing times of experts. Here, the comparison method is based on the dominance property. The criteria for dominance are presented. By the dominance criteria, for each job, a mojor TFN and a minor TFN are selected and apessimistic sequence with mojor TFNs and an optimistic sequence with minor TFNs are computed. The three-machine flow shop problem is considered as an example to illustrate the approach.

  • PDF

Scheduling of a Casting Sequence Considering Ingot Weight Restriction in a Job-Shop Type Foundry (잉곳 무게 제한 조건을 고려한 Job-Shop형 주물공장의 스케줄링)

  • Park, Yong-Kuk;Yang, Jung-Min
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.3
    • /
    • pp.17-23
    • /
    • 2008
  • In this research article, scheduling a casting sequence in a job-shop type foundry involving a variety of casts made of an identical alloy but with different shapes and II weights, has been investigated. The objective is to produce the assigned mixed orders satisfying due dates and obtaining the highest ingot efficiency simultaneously. Implementing simple integer programming instead of complicated genetic algorithms accompanying rigorous calculations proves that it can provide a feasible solution with a high accuracy for a complex, multi-variable and multi-constraint optimization problem. Enhancing the ingot efficiency under the constraint of discrete ingot sizes is accomplished by using a simple and intelligible algorithm in a standard integer programming. Employing this simple methodology, a job-shop type foundry is able to maximize the furnace utilization and minimize ingot waste.