• Title/Summary/Keyword: Jacobi

Search Result 291, Processing Time 0.019 seconds

BLOCK ITERATIVE METHODS FOR FUZZY LINEAR SYSTEMS

  • Wang, Ke;Zheng, Bing
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.119-136
    • /
    • 2007
  • Block Jacobi and Gauss-Seidel iterative methods are studied for solving $n{\times}n$ fuzzy linear systems. A new splitting method is considered as well. These methods are accompanied with some convergence theorems. Numerical examples are presented to illustrate the theory.

GENERATING FUNCTION OF TRACES OF SINGULAR MODULI

  • Kim, Chang Heon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.375-386
    • /
    • 2007
  • Let p be a prime and $f(z)=\Sigma_{n}a(n)q^n$ be a weakly holomorphic modular function for ${\Gamma}^*_0(p)$ with a(0) = 0. We use Bruinier and Funke's work to find the generating series of modular traces of f(z) as Jacobi forms.

  • PDF

INFINITESIMALLY GENERATED STOCHASTIC TOTALLY POSITIVE MATRICES

  • Chon, In-Heung
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.269-273
    • /
    • 1997
  • We show that each element in the semigroup $S_n$ of all $n \times n$ non-singular stochastic totally positive matrices is generated by the infinitesimal elements of $S_n$, which form a cone consisting of all $n \times n$ Jacobi intensity matrices.

  • PDF

FPGA Implementation of Unitary MUSIC Algorithm for DoA Estimation (도래방향 추정을 위한 유니터리 MUSIC 알고리즘의 FPGA 구현)

  • Ju, Woo-Yong;Lee, Kyoung-Sun;Jeong, Bong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • In this paper, the DoA(Direction of Arrival) estimator using unitary MUSIC algorithm is studied. The complex-valued correlation matrix of MUSIC algorithm is transformed to the real-valued one using unitary transform for easy implementation. The eigenvalue and eigenvector are obtained by the combined Jacobi-CORDIC algorithm. CORDIC algorithm can be implemented by only ADD and SHIFT operations and MUSIC spectrum computed by 256 point DFT algorithm. Results of unitary MUSIC algorithm designed by System Generator for FPGA implementation is entirely consistent with Matlab results. Its performance is evaluated through hardware co-simulation and resource estimation.

STRUCTURE JACOBI OPERATOR OF SEMI-INVARINAT SUBMANIFOLDS IN COMPLEX SPACE FORMS

  • KI, U-HANG;KIM, SOO JIN
    • East Asian mathematical journal
    • /
    • v.36 no.3
    • /
    • pp.389-415
    • /
    • 2020
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ and R'X be the structure Jacobi operator with respect to the structure vector ξ and be R'X = (∇XR)(·, X)X for any unit vector field X on M, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξ𝜙 = 𝜙Rξ and at the same time R'ξ = 0, then M is a Hopf real hypersurfaces of type (A), provided that the scalar curvature ${\bar{r}}$ of M holds ${\bar{r}}-2(n-1)c{\leq}0$.

Structure Jacobi Operators of Real Hypersurfaces with Constant Mean Curvature in a Complex Space Form

  • Hwang, Tae Yong;Ki, U-Hang;Kurihara, Hiroyuki
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1207-1235
    • /
    • 2016
  • Let M be a real hypersurface with constant mean curvature in a complex space form $M_n(c),c{\neq}0$. In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ with respect to the structure vector field ${\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor field ${\phi}$, then M is a homogeneous real hypersurface of Type A.

THE JACOBI OPERATOR OF REAL HYPERSURFACES IN A COMPLEX SPACE FORM

  • Ki, U-Hang;Kim, He-Jin;Lee, An-Aye
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.545-560
    • /
    • 1998
  • Let ø and A be denoted by the structure tensor field of type (1,1) and by the shape operator of a real hypersurface in a complex space form $M_{n}$ (c), c $\neq$ 0 respectively. The main purpose of this paper is to prove that if a real hypersurface in $M_{n}$ (c) satisfies $R_{ξ}$ øA = $AøR_{ξ}$, then the structure vector field ξ is principal, where $R_{ξ}$ / is the Jacobi operator with respect to ξ.

  • PDF