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TWO IDENTITIES INVOLVING THETA FUNCTIONS

Mahendra Pal Chaudhary, Getachew Abiye Salilew, and Junesang Choi∗

Abstract. We aim to present two identities which reveal certain inter-
esting relationships among three fundamental theta functions arising from

the Jacobi’s triple product in an elementary way.

1. Introduction and preliminaries

Jacobi [7] initiated the theory of theta functions which has a long history
and many applications in a variety of research fields such as number theory (for
example, quadratic forms and elliptic functions) and quantum physics. The
Jacobi triple product, which an infinite series is expressed as an infinite product,
is given as follows (see [7]):
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From (1.1), it is easy to define the following three fundamental theta functions:
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In this note, we present two identities which reveal certain interesting re-
lationships among three fundamental theta functions arising from the Jacobi’s
triple product in an elementary way. For more details and results, the interested
reader may be referred to the works [1, 2, 3, 4, 5, 6, 8, 9, 10] and the references
therein.
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To do this, we express the functions f(−x), φ(x), and ψ(x) in the rising
powers:

f(−x) = 1 +

∞∑
n=1

(−1)n
(
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)
= 1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26 − · · · ;

(1.5)

φ(x) = 1 + 2

∞∑
n=1

xn
2

= 1 + 2x+ 2x4 + 2x9 + 2x16 + · · · ; (1.6)

ψ(x) = 1 +

∞∑
n=1

x
n(n+1)

2 = 1 + x+ x3 + x6 + x10 + x15 + · · · . (1.7)

2. Main results

Here, we present two identities that reveal certain interesting relationships
among the three functions f(−x), φ(x), and ψ(x), which are asserted by the
following theorem.

Theorem 2.1. Let f(−x), φ(x), and ψ(x) be the functions in (1.2), (1.3), and
(1.4), respectively. Then

f(−x3)f(−x9) =φ(x54)[ψ(x4)− x4ψ(x36)] + x13ψ(x108)[φ(x2)− φ(x18)]

− x3ψ(x27)[ψ(x)− xψ(x9)]

(2.1)
and

8x3[ψ(x4)− x4ψ(x36)][ψ(x20)− x20ψ(x180)]

= [φ(x3)φ(x15)− φ(−x3)φ(−x15)] + 3[φ(−x27)φ(−x135)− φ(x27)φ(x135)]

+ [φ(x3)φ(x135)− φ(−x3)φ(−x135)] + [φ(x27)φ(x15)− φ(−x27)φ(−x15)].

(2.2)

Proof. For (2.1), let L(x) and R(x) be the left- and right-sides of (2.1), respec-
tively. By using the expansions in (1.5), (1.6), and (1.7), we can see that

L(x) = 1− x3 − x6 − x9 + x12 + 2x15 − x18 + 2x21 − x30

− x33 − x36 − x39 + x45 − x48 − x51 + 2x54 + x60 + 2x63

+ x66 − x69 − x75 + 2x78 − x81 − x87 − x90 − x96 − x99

− x105 − 2x108 + 2x111 + 2x114 − x120 + x123 + x129

− x135 + 2x138 + 2x141 + x144 − 2x150 + 2x153 − x156

− x162 − x165 − x168 + x171 − · · ·
= R(x).

This completes the proof of (2.1). Similarly, we can prove (2.2). We omit the
details.
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