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SCALAR CURVATURE COMPARISONS OF LEVEL

HYPERSURFACES OF GEODESIC SPHERES

Jong Ryul Kim

Abstract. Using the comparison of differential equations involving Ricci

and scalar curvatures obtained by Eschenburg and O’Sullivan, the scalar
curvatures of level hypersurfaces of geodesic spheres are compared.

1. Introduction

The classical volume comparisons of geodesic balls with Ricci curvature
bounded below by Bishop and Bishop-Gromov give geometric applications ([1],
[2], [3]). By using a Jacobi tensor and its differential equation, the above vol-
ume comparisons can also be proved by means of the comparison of Jacobi
differential equations as in [6] and [7]. The Lorentzian versions are given in
[4], [5] and [8]. Some comparison theorems for three dimensional manifolds
with Ricci curvature bounded above are proved in [7] by the following differen-
tial equation (1) developed by Eschenburg and O’Sullivan. In this paper, the
comparisons of the scalar curvature of geodesic spheres are shown (Theorem 1
and corollaries) by combining the Bishop volume comparison Theorem and the
comparison of Jacobi differential equations (Lemma 1).

Let M be a Riemannian manifold of dimension n+ 1 ≥ 3 and γv be a radial
geodesic γv(t) = expptv with γv(0) = p and γ′v(0) = v for all v ∈ TpM . Let
S(r0) be a sphere of radius r0 in the tangent space TpM and Hr0 = exppS(r0)
be a hypersurface in M . Consider a geodesic variation along a unit-speed
radial geodesic γv(t) orthogonal to Hr0 whose shape operator is denoted by
S−γ(r0) = SN . For each level hypersurface Ht = exppS(t) of Hr0 with 0 < r0 <
t < cutv(p), we get the following differential equation obtained by Eschenburg
and O’Sullivan in [7]

(1) θ′(t) + θ2(t) + sM − s(Ht)− Ric(γ′v(t), γ
′
v(t)) = 0,
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where we denote by sM , s(Ht) the scalar curvature of M at the point γv(t),
the scalar curvature of level hypersurface Ht, respectively and θ(t) is the mean
curvature of Ht along γv(t) (see (14)).

Definition 1 (cf. [10]). Let γ be a unit speed geodesic orthogonal to a
hypersurface H at γ(r) with Nγ(r) = −γ′(r). A smooth (1, 1) tensor field

A : (γ′)⊥ → (γ′)⊥ is called an H-Jacobi tensor along γ if it satisfies

A′′ +R(A, γ′)γ′ = 0, kerA ∩ kerA′ = {0}, A(r) = Id, A′(r) = SN ,

where SN is the shape operator of the hypersurface and Id is the identity
endomorphism of (γ′)⊥. A point γ(t0) for t0 ∈ (r,R) is called a focal point to
H if detA(t0) = 0.

We assume a linear isometry for volume and the scalar curvature compar-
isons

(2) ı : TpM → Tp̄M̄

such that ı(γ′v(0)) = γ̄′v̄(0) for all v ∈ TpM . Let Hr0 = exppS(r0), H̄r0 =

expp̄S(r0) be hypersurfaces in M , M̄ of dimension n + 1, respectively. Let
{e1, e2, . . . , en} be an orthonormal basis of Tγ(r0)Hr0 and {E1, E2, . . . , En} be
its parallel basis along γv(t) with Ei(r0) = ei for each i. The induced linear
isometry

(3) ı : Tγv(r0)Hr0 → Tγ̄v̄(r0)H̄r0

satisfies ı(γ′v(r0)) = γ̄′v̄(r0) for all v ∈ TpM and ı(Ei(r0)) = Ēi(r0). The cut
point of p ∈ M along γv(t) is denoted by cutv(p). The injectivity radius of
p ∈ M is defined by injS(1)(p) = inf{cutv(p) | v ∈ S(1)}. By γ̄v̄(t) = expp̄ ◦
ı ◦ exp−1

p tv for all v ∈ TpM and t less than min{injS(1)(p), injS(1)(p̄)}, we have

one-to-one correspondence between all corresponding points M and M̄ . Our
comparison results are:

Theorem 1. Let M̄(k) be a Riemannian manifold of constant curvature k with
dimension n + 1 ≥ 3 and γ̄v̄(t) be a unit speed radial geodesic with γ̄v̄(0) = p̄
and γ̄′v̄(0) = v̄ for all v̄ ∈ Tp̄M̄ orthogonal to a hypersurface H̄r0 = expp̄S(r0).
Let M be an arbitrary Riemannian manifold and γv(t) be a unit speed radial
geodesic with γv(0) = p and γ′v(0) = v for all v ∈ TpM orthogonal to a hypersur-
face Hr0 = exppS(r0). Assume that nk = Ric(γ̄′v̄(t), γ̄

′
v̄(t)) ≤ Ric(γ′v(t), γ

′
v(t))

for all v ∈ TpM , θ(r0) = θ̄(r0) and detA(r0) = detĀ(r0) under a linear
isometry ı : TpM → Tp̄M̄ such that ı(γ′v(0)) = γ̄′v̄(0) for all v ∈ TpM . If
R( · , γ′v)γ′v = Rγ′v 6= Rγ̄′ = R( · , γ̄′v)γ̄′v or Hr0 = exppS(r0) is not totally um-
blic, then we get

sM̄ − s(H̄t) < sM − s(Ht)

for all corresponding points γ̄v̄(t) and γv(t) by a linear isometry ı and r0 < t <
min{injS(1)(p), injS(1)(p̄)}.
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If sM − s(Ht)− Ric(γ′v(t), γ
′
v(t)) ≤ sM̄ − s(H̄t)− Ric(γ̄′v̄(t), γ̄

′
v̄(t)), then we

get

sM − s(Ht) < sM̄ − s(H̄t)

for all corresponding points γ̄v̄(t) and γv(t) and

r0 < t < min{injS(1)(p), injS(1)(p̄)}.

Under the conditions of Theorem 1 we have:

Corollary 1. If sM ≤ sM̄ under nk ≤ Ric(γ′v(t), γ
′
v(t)) for all v ∈ TpM , then

we get

s(Ht) < s(H̄t)

for all corresponding points γ̄v̄(t) and γv(t) and

r0 < t < min{injS(1)(p), injS(1)(p̄)}.

The conclusion of Corollary 1 means in another words that

s(Ht) on Ht is less than s(H̄t) on H̄t

for r0 < t < min{injS(1)(p), injS(1)(p̄)}. So we apply it to comparison.

Corollary 2. If sM ≤ sM̄ with nk ≤ Ric(γ′v(t), γ
′
v(t)) for all v ∈ TpM , then

we get for each r0 < t < r < min{injS(1)(p), injS(1)(p̄)}∫ r

r0

∫
S(1)

s(Ht) detA(t) dv dt <

∫ r

r0

∫
S(1)

s(H̄t) det Ā(t) dv dt

and ∫
S(1)

s(Ht) dHt <

∫
S(1)

s(H̄t) dH̄t,

where dHt = detA(t) dv is the volume element of each hypersurface Ht =
exppS(t) and dv is the volume element of S(1).

In Section 4, we show that a Lorentzian analogue of Theorem 1 does not
hold mainly due to the differential equation (22) along a unit timelike geodesic
γ instead of (14). But a Lorentzian analogue of Lemma 2 can be similarly
stated (Lemma 3).

2. Preliminaries

The shape operator S−γ′(t) of each level hypersurface Ht of Hr0 is given by

(4) A′A−1(t) = S−γ′(t) = St

as in [7]. We denote by θ(t) = trSt the mean curvature of Ht along a radial
geodesic γv(t). Put B = A′A−1 for the H-Jacobi tensor A(t) along γv(t), then
we have

(5) B′ = A′′A−1 −A′A−1A′A−1 = −Rγ′v −B ◦B,
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where we put R(A, γ′v)γ
′
v = Rγ′vA. The shear tensor σ is defined by σ =

B − θ
n Id. Taking the trace of (5), we get the Raychaudhuri equation

(6) θ′ +
θ2

n
+ Ric(γ′v, γ

′
v) + trσ2 = 0,

where Ric(γ′v, γ
′
v) =

∑n
i=1 g(R(ei, γ

′
v)γ
′
v, ei) for an orthonormal basis {ei}ni=1 of

γ′v
⊥

. The expansion θ of A along γv is also expressed as

(7) θ = tr(B) =
(det(A))′

det(A)
.

Put x = (detA)
1
n . Then we see

(8) x′ =
1

n
xθ, x′′ =

1

n
(θ′ +

θ2

n
)x.

So we obtain the Jacobi equation by (6) and (8)

(9) x′′ +
1

n
(Ric(γ′v, γ

′
v) + trσ2)x = 0.

We use the following lemma in [7] for the comparison of the Jacobi equations.
Note that the inequality ≤ in Lemma 1 can be replaced by ≥.

Lemma 1 ([7]). For a smooth function f : R → R, let x, x̄ be a smooth
function such that x, x̄ is a solution of the differential inequality x′′ + fx ≤ 0,
x̄′′ + fx̄ = 0, respectively with x̄(t0) = x(t0) and x′(t0) ≤ x̄′(t0) and x and x̄
are both positive in some interval [t0, t). Let s, s̄ be the first positive zero of x,

x̄, respectively. Then s ≤ s̄ and x ≤ x̄ and x′

x ≤
x̄′

x̄ on [t0, s].

Proof. Put h = x
x̄ and g = h′x̄2 = x′x̄−xx̄′. If x̄(t0) = x(t0) and x′(t0) ≤ x̄′(t0),

then we have

g(t0) = x′(t0)x̄(t0)− x(t0)x̄′(t0) = (x′(t0)− x̄′(t0))x̄(t0) ≤ 0

and g′ = x′′x̄−xx̄′′ = (x′′+fx)x̄ ≤ 0. So g ≤ 0, hence h′ ≤ 0. Since h(t0) ≤ 1,
we see h ≤ 1. Therefore x ≤ x̄. It follows from g(t0) ≤ 0, g′ ≤ 0 and

x′

x
− x̄′

x̄
=
x′x̄− xx̄′

xx̄

that x′

x ≤
x̄′

x̄ . �

For the linear isometry (2), we get H̄r0 = expγ̄(r0) ◦ ı ◦ exp−1
γ(r0)Hr0 . A

Riemannian volume between level hypersurfaces Hr0 and Hr is defined by

Vr0(r) =

∫ r

r0

∫
S(1)

|detA| dv dt,

where dv is the volume element of S(1) and r0 < r is less than the injectivity
radius injS(1)(p) = inf{cutv(p) | v ∈ S(1)}.
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Recall that we consider a radial geodesic γv(t) for all v ∈ TpM . For sim-
plicity, γ(t) is referred to as γv(t). Let M̄(k) be an (n + 1)-dimensional Rie-
mannian manifold of constant curvature k as the model space of volume com-
parison and γ̄ be a unit speed radial geodesic orthogonal to the hypersurface
H̄r0 = expp̄S(r0) for p̄ ∈ M̄ . The shear tensor σ̄(t) along a geodesic γ̄(t)

is zero if and only if the shape operator of the hypersurface H̄r0 is given by
S−γ̄′(r0) = Ā′Ā−1(r0) = c Id (4) for some real constant c together with the
isotropic curvature tensor Rγ̄(t) = k(t) Id ([10], p. 574). Then the Jacobi
equation along a geodesic γ̄ is given by

x̄′′ +
1

n
Ric(γ̄′, γ̄′)x̄ = 0,

where x̄ = (detĀ)
1
n . So the Ricci inequality nk = Ric(γ̄′, γ̄′) ≤ Ric(γ′, γ′)

implies that x ≤ x̄ under initial conditions detA(r0) = detĀ(r0) and θ(r0) ≤
θ̄(r0) by comparing the following differential equations (Lemma 1)

x′′ +
1

n
(Ric(γ′, γ′) + trσ2)x = 0, x̄′′ +

1

n
Ric(γ̄′, γ̄′)x̄ = 0.

Thus we get Vr0(r1) ≤ V̄r0(r1), where r1 is less than the minimum of the first
focal values of the hypersurfaces Hr0 and H̄r0 . The same proof for the volume
equality holds as in [8]. The Bishop-Gromov volume comparison between level
hypersurfaces with the initial value conditions can be proved like Theorem 4.4

[4] by using the fact that θ = y′

y ≤
ȳ′

ȳ = θ̄.

As in [7], let RH , RicH denote the curvature, Ricci tensor of Ht induced by
M , respectively. For v, w ∈ Tγ(t)Ht, the trace of the Gauss equation

(10) g(R(v, w)w, v)=g(RH(v, w)w, v)−g(Stv, v)g(Stw,w)+g(Stv, w)g(Stv, w)

gives

(11) Ric(w,w)− g(R(γ′, w)w, γ′) = RicH(w,w)− trStg(Stw,w) + g(S2
tw,w).

Again, the trace of (11) gives

(12) sM − 2Ric(γ′, γ′) = s(Ht)− (trSt)
2 + trS2

t ,

where s(Ht) and sM denote, respectively, the scalar curvature of Ht and M at
the point γ(t). By B = A′A−1 = St and (6), the equation (12) is equal to

(13) sM−2Ric(γ′, γ′) = s(Ht)−θ2+(
θ2

m
+trσ2) = s(Ht)−θ2−θ′−Ric(γ′, γ′).

Hence we obtain

(14) θ′ + θ2 + sM − s(Ht)− Ric(γ′, γ′) = 0.

Let M and M̄ be (n+ 1)-dimensional Riemannian manifolds. Let A and Ā

be H-Jacobi tensors along geodesics γ and γ̄. By differentiating θ = (det(A))′

det(A) ,

thus θ′ = y′′

y − θ
2 for y = detA, we get

y′′ − (θ′ + θ2)y = 0.
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Hence the following differential equations

y′′ − (θ′ + θ2)y = 0, ȳ′′ − (θ̄′ + θ̄2)ȳ = 0

become by (14)

(15) y′′+(sM−s(Ht)−Ric(γ′, γ′))y = 0, ȳ′′+(sM̄−s(H̄t)−Ric(γ̄′, γ̄′))ȳ = 0.

Thus the comparison of the above differential equations using Lemma 1 enables
us to compare the volumes Vr0(r) and V̄r0(r) under inequality

sM − s(Ht)− Ric(γ′, γ′) ≤ sM̄ − s(H̄t)− Ric(γ̄′(t), γ̄′(t)).

Lemma 2. Let Hr0 = exppS(r0) and H̄r0 = expp̄S(r0) be hypersurfaces or-
thogonal to geodesics γ and γ̄ in (n+1)-dimensional Riemannian manifolds M
and M̄ . If detA(r0) = detĀ(r0), θ(r0) = θ̄(r0) and

sM − s(Ht)− Ric(γ′(t), γ′(t)) ≤ sM̄ − s(H̄t)− Ric(γ̄′(t), γ̄′(t)),

then we get

Vr0(r) ≥ V̄r0(r),

where 0 < r0 < r < min{injS(1)(p), injS(1)(p̄)}.

Proof. Consider the differential equation (15) along a geodesic γ, γ̄

y′′ + (sM − s(Ht)− Ric(γ′, γ′))y = 0, ȳ′′ + (sM̄ − s(H̄t)− Ric(γ̄′, γ̄′))ȳ = 0,

respectively. If sM − s(Ht)−Ric(γ′(t), γ′(t)) ≤ sM̄ − s(H̄t)−Ric(γ̄′(t), γ̄′(t)),
then we have

y′′

y
= −(sM − s(Ht)− Ric(γ′, γ′)) ≥ −(sM̄ − s(H̄t)− Ric(γ̄′, γ̄′)).

Hence we get

ȳ′′ + (sM̄ − s(H̄t)− Ric(γ̄′, γ̄′))ȳ = 0, y′′ + (sM̄ − s(H̄t)− Ric(γ̄′, γ̄′))y ≥ 0.

By Lemma 1, we get y ≥ ȳ under y(r0) = ȳ(r0) and y′(r0) = ȳ′(r0) ((4), (7)).
Therefore we obtain Vr0(r) ≥ V̄r0(r). �

3. Proof of Theorem 1 and corollaries

We prove Theorem 1 by using the induced linear isometry (3) ı : Tγv(r0)Hr0

→ Tγ̄v̄(r0)H̄r0 such that ı(γ′v(r0)) = γ̄′v̄(r0) for all v ∈ TpM . For simplicity, γ(t)
is referred to as γv(t).

First, if nk = Ric(γ̄′(t), γ̄′(t)) ≤ Ric(γ′(t), γ′(t)), then Vr0(r) ≤ V̄r0(r) by
Bishop comparison Theorem. The equality Vr0(r) = V̄r0(r) holds if and only
if Rγ′ = Rγ̄′ and the hypersurface Hr0 = exppS(r0) is totally umblic with

θ(r0) = θ̄(r0) (Theorem 4 in [8]). Hence we see that

(16) nk ≤ Ric(γ′(t), γ′(t)) implies Vr0(r) < V̄r0(r),

since we assume that Rγ′ 6= Rγ̄′ or Hr0 = exppS(r0) is not totally umblic.
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Second, under the assumptions of θ(r0) = θ̄(r0) and detA(r0) = detĀ(r0), if

sM − s(Ht)− Ric(γ′, γ′) ≤ sM̄ − s(H̄t)− Ric(γ̄′, γ̄′),

then Vr0(r) ≥ V̄r0(r) by Lemma 2.
Hence the contraposition gives

(17) Vr0(r) < V̄r0(r) implies sM−s(Ht)−Ric(γ′, γ′) > sM̄−s(H̄t)−Ric(γ̄′, γ̄′)

which is equivalent to

(18) sM̄ − s(H̄t)− (sM − s(Ht)) < Ric(γ̄′, γ̄′)− Ric(γ′, γ′).

By combining the above two facts (16) and (17), we obtain from (18)

(19) sM̄ − s(H̄t) < sM − s(Ht)

for all corresponding points γ̄v̄(t) and γv(t) and

r0 < t < min{injS(1)(p), injS(1)(p̄)}.

Now we show the second statement in Theorem 1. First, under the assump-
tions of θ(r0) = θ̄(r0) and detA(r0) = detĀ(r0), if sM − s(Ht) − Ric(γ′, γ′) ≤
sM̄ − s(H̄t)− Ric(γ̄′, γ̄′), then we get Vr0(r) ≥ V̄r0(r) by Lemma 2.

Second, recall that nk = Ric(γ̄′, γ̄′) ≤ Ric(γ′, γ′) implies Vr0(r) < V̄r0(r),
since we assume that Rγ′ 6= Rγ̄′ or Hr0 = exppS(r0) is not totally umblic.

Hence by contraposition if Vr0(r) ≥ V̄r0(r), then

nk = Ric(γ̄′, γ̄′) > Ric(γ′, γ′).

By combining the above two facts, we obtain that if

(20) sM − s(Ht)− Ric(γ′, γ′) ≤ sM̄ − s(H̄t)− Ric(γ̄′, γ̄′),

then we get Ric(γ′, γ′) < nk. Hence we obtain from (20)

0 < nk − Ric(γ′, γ′) = Ric(γ̄′, γ̄′)− Ric(γ′, γ′) ≤ sM̄ − s(H̄t)− (sM − s(Ht)).

Therefore we get sM − s(Ht) < sM̄ − s(H̄t). Consider for all radial geodesics.
Then we get

sM − s(Ht) < sM̄ − s(H̄t)

for all corresponding points γ̄v̄(t) and γv(t) and

r0 < t < min{injS(1)(p), injS(1)(p̄)}.

Proof of Corollary 1. If sM ≤ sM̄ , then we get

s(Ht) < s(H̄t)

for all corresponding points γ̄v̄(t) and γv(t) and

r0 < t < min{injS(1)(p), injS(1)(p̄)},

since 0 ≤ sM̄ − sM < s(H̄t)− s(Ht) by (19). �
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Proof of Corollary 2. First, the Ricci inequality nk ≤ Ric(γ′v(t), γ
′
v(t)) implies

that

(detA)
1
n = x ≤ x̄ = (detĀ)

1
n

under initial conditions detA(r0) = detĀ(r0) and θ(r0) ≤ θ̄(r0) by Lemma 1.

Second, recall that if sM ≤ sM̄ with nk ≤ Ric(γ′v(t), γ
′
v(t)), then

s(Ht) on Ht is less than s(H̄t) on H̄t

by Corollary 1.
By combining the above two facts for 0 < r0< r < min{injS(1)(p), injS(1)(p̄)},

we obtain∫ r

r0

∫
S(1)

s(Ht) detA(t) dv dt <

∫ r

r0

∫
S(1)

s(H̄t) det Ā(t) dv dt,

where dv is the volume element of S(1). Let us denote by dHt, dH̄t the volume
element of a hypersurface Ht = exppS(t), H̄t = expp̄S(t), respectively. Note

that dHt = detA(t) dv and dH̄t = det Ā(t) dv. So we get∫
S(1)

s(Ht) dHt <

∫
S(1)

s(H̄t) dH̄t.
�

4. The Lorentzian case

We introduce a Lorentzian version of the volume comparison as in [4], [5].
Let Fut(TpM) be the set of all future directed timelike vectors v ∈ TpM such
that expp(v) is defined for a fixed point p ∈M . Put

H(1) = {v ∈ Fut(TpM) | 〈v, v〉 = −1}
and denote by H∗(1) a compact subset of H(1). Consider a geodesic variation
along a unit timelike geodesic γ starting from p which gives level hypersurfaces
of a geodesic sphere exppH

∗(1). Put

(BHp )r1r0 = {expp(tv) | v ∈ H∗(1), r0 ≤ t ≤ r1}

for 0 < r0 < r1 < cutv(p). Let M be a globally hyperbolic Lorentzian man-
ifold and γv be a unit timelike radial geodesic γv(t) = expptv with γv(0) = p
and γ′v(0) = v for all v ∈ Fut(TpM). The Lorentzian volume Vr0(r1) =
Vol((BHp )r1r0) between H∗r0 = exppH

∗(r0) and H∗r1 = exppH
∗(r1) for H∗(r0) =

{v ∈ Fut(TpM) | 〈v, v〉 = −r2
0, v ∈ H∗(1)} is naturally given by

Vr0(r1) =

∫ r1

r0

∫
H∗(1)

|detA| dvdt,

where dv is the volume element of H∗(1).
By taking the sign into the account for the trace of the Gauss equation (10)

along a unit timelike geodesic orthogonal to a spacelike hypersurface H in a
Lorentzian manifold M , we get

(21) Ric(w,w) + g(R(γ′, w)w, γ′) = RicH(w,w)− trStg(Stw,w) + g(S2
tw,w).
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Again, the trace of (21) gives

sM + 2Ric(γ′, γ′) = s(Ht)− (trSt)
2 + trS2

t ,

which is equal to

sM + 2Ric(γ′, γ′) = s(Ht)− θ2 + (
θ2

n− 1
+ trσ2) = s(Ht)− θ2− θ′−Ric(γ′, γ′).

Hence we obtain as in [9]

(22) θ′ + θ2 + sM − s(Ht) + 3Ric(γ′, γ′) = 0.

Here γ(t) is referred to as γv(t) for all v ∈ Fut(TpM). Let M,M̄ be globally
hyperbolic Lorentzian manifolds of dimension n + 1 and γ, γ̄ be unit timelike
geodesics orthogonal to hypersurfaces H∗r0 = exppH

∗(r0), H̄∗r0 = expp̄H
∗(r0),

for a fixed point p ∈ M , p̄ ∈ M̄ respectively. Let A, Ā be an H∗r0 , H̄∗r0-Jacobi
tensor along γ, γ̄, respectively. Assume a linear isometry

ı : Tγ(r0)H
∗
r0 → Tγ̄(r0)H

∗(r0)

such that H̄∗(r0) = expγ̄(r0) ◦ ı◦exp−1
γ(r0)H

∗
r0 and ı(γ′(r0)) = γ̄′(r0), ı(Ei(r0)) =

Ēi(r0) for an orthonormal basis {e1, e2, . . . , en} of Tγ(r0)H
∗
r0 and its parallel

basis {E1, E2, . . . , En} along γ with Ei(r0) = ei for each i. Using a linear
isometry ı : Tγ(r0)H

∗
r0 → Tγ̄(r0)H̄

∗
r0 and the following differential equations

along γ and γ̄,

y′′+ (sM − s(Ht) + 3Ric(γ′, γ′))y = 0, ȳ′′+ (sM̄ − s(H̄t) + 3Ric(γ̄′, γ̄′))ȳ = 0.

We get a Lorentzian analogue of Lemma 2.

Lemma 3. Let H∗r0 = exppH
∗(r0) and H̄∗r0 = expp̄H

∗(r0) be hypersurfaces
orthogonal to timelike geodesics γ and γ̄ in (n+ 1)-dimensional globally hyper-
bolic Lorentzian manifolds M and M̄ . If θ(r0) = θ̄(r0), detA(r0) = detĀ(r0)
and

sM − s(Ht) + 3Ric(γ′(t), γ′(t)) ≤ sM̄ − s(H̄t) + 3Ric(γ̄′(t), γ̄′(t)),

then we get
Vr0(r) ≥ V̄r0(r),

where 0 < r0 < r < min{cutv(p), cutv̄(p̄)}.

The comparison results of Theorem 1 do not hold in Lorentzian geometry.
First, we have

(23) nk ≤ Ric(γ′(t), γ′(t)) implies Vr0(r) < V̄r0(r)

under the assumption that Rγ′ 6= Rγ̄′ or Hr0 = exppS(r0) is not totally umblic
by the same arguments in the proof of Theorem 1.

Second, if sM − s(Ht) + 3Ric(γ′(t), γ′(t)) ≤ sM̄ − s(H̄t) + 3Ric(γ̄′(t), γ̄′(t))
under θ(r0) = θ̄(r0) and detA(r0) = detĀ(r0), then we have Vr0(r) ≥ V̄r0(r) by
Lemma 3. Hence by contraposition if Vr0(r) < V̄r0(r), then we get

sM − s(Ht) + 3Ric(γ′(t), γ′(t)) > sM̄ − s(H̄t) + 3Ric(γ̄′(t), γ̄′(t))
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which is equivalent to

(24) sM − s(Ht)− (sM̄ − s(H̄t)) > 3(Ric(γ̄′(t), γ̄′(t))− Ric(γ′(t), γ′(t))).

Thus we note that nk < Ric(γ′, γ′) does not imply

sM − s(Ht)− (sM̄ − s(H̄t)) > 0.
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