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THE JACOBI OPERATOR OF REAL
HYPERSURFACES IN A COMPLEX SPACE FORM

U-Hang K1, HE-JIN KiM AND AN-AYE LEE*

ABSTRACT. Let ¢ and A be denoted by the structure tensor field
of type (1,1) and by the shape operator of a real hypersurface in a
complex space form Mp(c), ¢ # 0 respectively. The main purpose of
this paper is to prove that if a real hypersurface in My (c) satisfies
R;$A = A¢Rg, then the structure vector field £ is principal, where
R is the Jacobi operator with respect to .

0. Introduction

A Kaehlerian manifold of constant holomorphic sectional curvature ¢
is called a complex space form, which is denoted by M,,(c). The complete
and simply connected complex space form is a complex projective space
P,C, a complex Euclidean space C,,, or a complex hyperbolic space H,C
according as ¢ > 0,c=0o0r c < 0.

The induced almost contact metric structure of a real hypersurface
M of Mp(c) will be denoted by (¢, 9,&,7).

Typical examples of real hypersurfaces in P,,C are homogeneous ones.
Takagi ([22]) classified homogeneous real hypersurfaces of a complex pro-
jective space P,C as the following six types.

THEOREM A. Let M be a homogeneous real hypersurface of P,C.
Then M is locally congruent to one of the followings:

(A1) ageodesic hypersphere (that is, a tube over a hyperplane P,_;C),
(A2) a tube over a totally geodesic PrC(1 <k <n—2),
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(B) a tube over a complex quadric Qn—1,

(C) a tube over P\C X Pn_1y/2C and n(> 5) is odd,

(D) a tube over a complex Grassman G2 5C and n =9,

(E) a tube over a Hermitian symmetric space SO(10)/U(5) and n =
15.

This result was generalized by many authors ([4], [7], [10], [11], [13]
and [16] etc.). One of them, Kimura ([10]) asserts that M has constant
principal curvatures and the structure vector field £ is principal if and
only if M is locally congruent to a homogeneous real hypersurface.

On the other hand, real hypersurfaces of H,,C have been also investi-
gated by many geometers([2], [9], [17] and [18] etc.) from different points
of view. In particular, Berndt ([3]) proved the following:

THEOREM B. Let M be a real hypersurface of H,C. Then M has
constant principal curvatures and € is principal if and only if M is locally
congruent to one of the followings:

(Ag) a self-tube, that is, a horosphere,
(A1) a geodesic hypersphere or a tube over a hyperplane H,_,C,
(A2) a tube over a totally geodesic HxC(1 < k <n — 2),

(B) a tube over a totally real hyperbolic space H,R.

Let M be a real hypersurface of type A; or type As in a complex pro-
jective space P,C or that of type Ag, A; or Az in a complex hyperbolic
space H,,C. Then M is said to be of type A for simplicity. By a theorem
due to Okumura ([19]) and to Montiel and Romero ([18]) we have

THEOREM C. If the shape operator A and the structure tensor ¢
commute to each other, then a real hypersurface of a complex space
form M, (c), ¢ # 0 is locally congruent to be of type A.

We denote by V the Levi-Civita connection with respect to g. The
curvature tensor field R on M is defined by R(X,Y) = [Vx,Vy] —
V(x,y], where X and Y are vector fields on M. We define the Jacobi
operator field Ry = R(-, X)X with respect to a unit vector field X. Then
we see that Rx is a self-adjoint endomorphism of the tangent space. It
is related with the Jacobi vector fields, which are solutions of the second
order differential equation (the Jacobi equation) V4(V;Y )+ R(Y,¥)y =
0 along a geodesic «y. It is well-known that the notion of Jacobi vector
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fields involve many important geometric properties. In the preceding
work [5], we investigated the Jacobi operators on real hypersurfaces in
a complex projective space. Particularly, Cho and one of the present
authors proved the following ([6])

THEOREM D. Let M be a connected real hypersurface of P,C. If
M satisfies RepA = ARy, then M is locally congruent to one of the
following spaces:

(A1) a geodesic hypersphere (that is, a tube of radius r over a hyper-
plane P,_1C, where 0 <1 < );

(As) a tube of radius r over a totally geodesic PyC(1 < k < n —2),
where 0 <r < 7.

The purpose of the present paper is to improve above Theorem D.
Namely we will prove the following:

THEOREM. Let M be a real hypersurface satisfying Re¢pA = A¢pRe
in a complex space form My, (c),c # 0. Then M is locally congruent to
be of type A.

The first author wishes to express his gratitude to TGRC-KOSEF
who gave him the opportunity to study at Chiba University.

1. Preliminaries

Let M, (c) be a real 2n-dimensional complex space form equipped with
parallel almost complex structure J and a Riemannian metric tensor G
which is J-Hermitian, and covered by a system of coordinate neighbor-
hoods {V;z4}.

Let M be a real (2n-1)-dimensional hypersurface of My(c) covered
by a system of coordinate neighborhoods {V; %"} and immersed isomet-
rically in My (c) by the immersion 2 : M — Mpy(c). Throughout the
present paper the following convention on the range of indices are used,
unless otherwise stated:

AB,--=1,2,...,2n; i,j,---=1,2,...,2n— 1.

The summation convention will be used with respect to those system of
indices. When the argument is local, M need not be distinguished from
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1(M). Thus, for simplicity, a point p in M may be identified with the
point i(p) and a tangent vector X at p may also be identified with the
tangent vector i,(X) at i(p) via the differential ¢, of i. We represent
the immersion ¢ locally by z# = z4(y*) and B; = (B;*) are also (2n-
1)-linearly independent local tangent vectors of M, where B4 = 9,4
and 8; = 0/8y’. A unit normal C' to M may then be chosen. The
induced Riemannian metric g with components g;; on M is given by
95i = GpaB;P B;# because the immersion is isometric.

For the unit normal C to M, the following representations are ob-
tained in each coordinate neighborhoods:

JB; = ¢,"Br +&C, JC=—-¢'B;,
where we have put ¢;; = G(JB;, B;) and & = G(JB;, C),£" being
components of a vector field { associated with &; and ¢;; = ¢,"gri. By
the properties of the almost Hermitian structure J, it is clear that ¢;; is
skew-symmetric. A tensor field of type (1,1) with components ¢, will

be denoted by ¢. By the properties of the almost complex structure J,
the following relations are then given:

b o =5+ &R, =0, £¢,7=0, &&=1,

that is, the aggregate (¢, g, £) defines an almost contact metric structure.

Denoting by V; the operator of van der Waerdern-Bortolotti covariant
differentiation with respect to the induced Riemannian metric, equations
of the Gauss and Weingarten for M are respectively obtained:

V;B; = A;C, V;C=-A/B,
where H = (Aj;) is a second fundamental form and A = (A;*), which is
related by Aj; = A, gr is the shape operator derived from C. By means

of above equations the covariant derivatives of the structure tensors are
yielded:

(1.1) Vid" = —Ajgh + AlG, Vigi=-ApeT

Since the ambient space is a complex space form, equations of the Gauss
and Codazzi for M are respectively given by

C
Ryjin =Z(gkhgji — gingki + Oknbji — Gjndri — 20k din)
+ AknAji — AjnAri,

(1.2)



The Jacobi operator of real hypersurfaces in a complex space form 549

(1.3) ViAji — VA = 2(§k¢jz’ — &Pk — 26iPk;),

where Ry;;n are components of the Riemannian curvature tensor R of
M.

In what follows, to write our formulas in convention forms, we denote
by A;;% = Ajp AT h = ;AT 0 = AugIgt and B = Ay, 2E9¢ If we
put U; = £"V,.§;, then U is orthogonal to the structure vector field &.
Because of the properties of the almost contact metric structure and the
second equation of (1.1), we can get

(1.4) ¢j7-Ur = Aj,{r — Otgj,

which shows that g(U,U) = B — a?. By the definition of U and the
second equation of (1.1), we easily see that

(1.5) U'Viér = A; 26 — adjp €.

On the other hand, differentiating (1.4) covariantly along M and mak-
ing use of (1.1), we find

(1.6) §AkrU™ + ¢ ViU = Vi Ajr — Ajr Ags ™ — arj + @ Age o),
which shows that
(1.7) (Vid;i)€€ = 245, U + i,

where oy = O '
Transforming (1.6) by ¢,” and taking account of (1.1) and (1.5), we
find

(1.8) ViU + &A% + & (Vidor)$:® = (Vi) (Vi) + ahgi.
By the definition of U, (1.1), (1.7) and (1.8) it is verified that

(1.9) £V Uj = —3U° Aped]” + QAjol” — BE; — dinct".
We put
(1.10) Ajr€" = ofj + pWj,

where W is a unit vector field orthogonal to £&. Then from (1.4) we see
that U = —u¢W, and W is also orthogonal to U. We assume that p # 0
on M, that is, £ is not a principal curvature vector field and we put
Q = {p € M{u(p) # 0}. Then Q is an open subset of M and hereafter
we discuss our argument on 2 otherwise stated.
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2. Real hypersurfaces satisfying R¢¢pA = A¢R,

Let M be a real hypersurface of My, (c),c # 0. Suppose that R¢¢pA =
A¢R¢. Then from (1.2) we have

(21) (A58 + Aind)’) = (458 (AU") + (Air")(A3:U°):

Transvecting (2.1) with &, we find

c

(2.2) aAerr = —ZUJ'.
Thus (2.1) turns out to be
(2.3) a(Ajrd;" + Awd;”) + Ui A" + U A€ = 0.

This means that R¢¢ = ¢R¢. By transvecting U*, we have
(2.4) ahy, 2€" = (B DAE + Zak;.
We put 8 = aX and fa = al — §(a # 0). Then (2.2) becomes
(2.5) AU = (0 = NUj
because a # 0 on 2, and hence (2.4) reduces to
(2.6) Ay, 260 = 0A5,E7 + 2650
Therefore (1.8) becomes
(2.7) ViU; +€ (Vidr)d)* = (Vi€") (Vo) +allis =& (0 AR +26r).

On the other hand, if we transvect V£’ to (2.3) and use (1.1), (1.5)
and (2.6), then we obtain

(VEE)(Vo) + Ay ? = S {-Uidip U + 0(Anr€) (Aisk) + SE4 A€},
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Consequently (2.7) becomes

ViUj + € (VeAar)d)" + & (0 At + 260)
(2.8)

1 c .
= aAjk - Ajkz - -&{UjAk,-UT + H(Akrér)(Ajsﬁs) + Z&,Aﬁ& },
which together with (2.5) implies

(29)  A{U*VWU; + ¢, (V, A USE"} = %{a(z\ —a)- -1

Differentiating (2.2) covariantly along €2, we find

(2.10) —gakUj + az(vaj.,-)Ur + azAerkUT = —-zcl-aka'

If we transvect £* to this and make use of (1.3), (1.9) and (2.6), then we
obtain

o?(V, 43)U"E* =7{da(E)U; + adjra”} — ® A o

+{ o? —Zc(aﬁ o + - )}A]rﬁr-l— az(/\ 2a)§;,

where we have defined da(£) = £ and used a(f — X)

—¢. Substi-
tuting this into (2.9) and using (2.3), we find
2U*V,U;
(2.11) ~ ~{ag(4¢,Va) + Sda()} A" +o”Ajra” + Zaay
+{ada(U) + 7 (30 ~ 206 - %c — )5,

where g(A¢, Va) = A;;87a. From (2.10) we have

(ajUk - akUj) + Zaz(fk(ﬁerr

=10

- Ej¢krUr) + Otz(Aj,-VkUT — Ak,.VjUT)
= ~49a(ka,- — V;Us).
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Taking the inner product the last equation with U* and using (2.2) and
(2.11), we get

o?A; %o + EaAj,a' + i{z + (A — a)}o;
(2.12)

9 ‘
= {ag(A¢, Va) + 7da(€)} (Myet” + 7€) + 7da(V)T;.

On the other hand, differentiating (2.6) covariantly along 2 and using
(1.1), we find

(ViAjs)ASE™ + A (ViAr)€® — Ay, 2 A" + 0 A5, Apag™
¢

= 0xAjr€" + 6(ViAjr )€™ — ZAkr¢jr7

which together with (1.7) and (2.5) yields

(2.13)

(219) (ViAw)E ASE = 5(0a)i + 044U
Transvecting (2.13) with £€* and making use of (1.7), we get
EF (VA ) APE™ +3(A;,. 20" - 0A4,;,UT) + Ajro” — bay;
= d0(§) Ajx€" + ZUs,
or, using (1.3), (2.5) and (2.14)

c

5Ui.

(2.15) %(oa),- — Ba; + Ajpa” = dB(E)Ajr€” + (3X— 0) A, UT +
From (1.10) and (2.6) we have
pA W™ = (0 - a)iag; + uW;) + 2§
and hence
(2.16) 2 =ald-a)+ 2
Thus it follows that
(2.17) A W™ = gy + (8 - )W,
because p # 0 on §, which together with (2.6) implies that

C C
(2.18) pA; W = (62 = af + D) Ajrl" + (0 - ).
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LEMMA 1. g(A¢,Va) = Ada(€) on Q.

PROOF. By transvecting (2.12) with uW?J and using (1.10) and (2.18),
we can verify the required equation. O

Differentiating (2.17) covariantly along © and using (1.1), we find
(VieAjp) W™ + Ajp ViWT
= pr€j — pAk,.qu" + (0 — a)W; + (0 — a) Vi W;.

Since £ and W are mutually unit orthogonal vector fields, it is seen
that pu™V;W, = A;UT. Thus, if we transvect (2.19) with W7 and use
(2.17), then we obtain

(2.20) (VjA,-s)WTWs = —2Aerr + 9_7' — 5.
Applying (2.19) by ¢’ and making use of (1.10) and (2.16), we get

(2.19)

(221)  p(VeAnWTE = (6~ 20) AU + - (6a)i - ac.
Because of (1.3), (1.7), (2.2), (2.20) and (2.21), we have
(ViAjr)(at® + pW*)(a™ + uW")
(2.22) c ¢
= —Z(Ba +26 - 2)\)U; — 1% + alb;.
Thus, applying (2.13) by A,*¢?, we find
~ $Ba+20 ~ U, — Sy + 000, + AT {04, U° — U, + - (0o),}
+0A,, 20T — 6%A;,U" — ger
= 9(AE, VO) A€ +0{0A5U" — SU; + 5 (60);),

where we have used (1.3), (1.10), (2.6), (2.14), (2.17), (2.21) and (2.22),
or using (2.5)
1

1 c
—Ajr(6a)” — -0(6a); =g(AE,VO)A;r€™ + —a; — arb;
(223) 2 J 2 J J 4 2 J

+ {5 (3a+ 30— 4X) + 200(0 — )}U;.
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LEMMA 2. do(U) =3(A - a)(§ - a?) on Q.
Proor. From (2.15), we have
(2A = 6)da(U) — adf(U) = {2(6 — \)(0 + a — 3)) — g}a()\ — @)

because of (2.5) and g(A&,U) = 0.
By (2.23) we also have

%a)\dG(U) +(ab - ah— %)\O)da(U)

+ {(0 — N)(3af — 2a) -- 20)) + g)\ — an}a()\ —a)=0.
Combining with the last two equations, it follows that
(6 — Nda(U) = ::i-ca(/\ —a) = 3a() — a)(f — )2,
which proves Lemma 2 because we have a(A — 6) = <. O
Transvecting (2.12) with &7, we have
29(Ag, Va) = adf(§) + 0da(§),
which together with Lemma 1 gives
(2.24) adf(£) = (2A — 0)da(€).
From Lemma 1 and (1.10) we also have
(2.25) pda(W) = (X — a)da(§).
If we apply (2.15) by uW7 and take account of (2.24), then we find
padd(W) — pfda(W) + 2ug(AW, Va) = 2(X — o) (2 — 0)da(f),
or make use of (2.17) and(2.25),
pedd(W) = (422 — 20\ — 30X + 6o — g)da(§).
Thus we see that
(2.26) padf(W) = (A — a)(4X — 30)da(€)

because of a(A — ) = .
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3. Proof of theorem

In this section we shall prove that £ is a principal curvature vector
field on M. By Lemma 1 and Lemma 2, (2.12) turns out to be

. C ., C.C
azAj,. 2o + EaAjra + Z{Z + a(A — o)}
c , C 3 c
= r{eh+ e + 26) + Felr - (5 - )Y

where we have put 7 = da(€). Because of (2.2) and (2.24), the equation
(2.15) is reduced to

1
(3.1) adsa’ + Za(8a); - aa; = T(2A—0) A€ + 2(2(1 —3A+0)U;,

which together with (2.6) implies
ad;, 2o” + %aAjr(Oa)" — OaAjra’
= 7(2\ — 0) (0 A€ + 2@-) + §(2a — 3A+0)A;U".
Using (1.10), (2.24), (2.26) and the fact that a(A — 0) = §, we have
ag(AE, V) = (4X2 — 30X — -;1)7.

Therefore (2.23) implies

1
§aAjT(9a)" - %a@(ﬁa)j - %aaj + Aa?f;

= 7(4)2 — 30 — g)A,.Tg’ + -Z(Baz + 300 — dak — 220)U;.

Combining with the last four equations, we can verify by directly
computation that

, c
(3.2) aaj = TA;E + 3(Z —- oAU
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which implies
(3.3) apjra = —1U; +3(7 — o®)(4;€" - af;).

On the other hand, from (2.8) we have

ViU; = VUi + (A = 20) (€ AjrE™ ~ € Akr§T)

3.4
( ) = &r(vjArs)Cbks - €r(vars)¢js'

Transvecting (3.4) with &% and using (1.7), (2.2) and (3.3), we find
3
(3.5)  ®(ViU; — V,Us) = (@ — yGha 3a?)(Aj€" — a&;) + TU;.

Differentiating (3.2) covariantly along © and taking account of (1.1),
we obtain

aVia; + aga; =1xAjpr k" + 7(ViAjr ) — TAjrAgsd”™
— 6o U; + 3(2— - o)V Uj,

from which, taking the skew-symmetric part with respect to k and j,

[+
(3.0 TeAjrl" — TjAprE" — §T¢1;j — 27Ajr Ags ™’
3.6
—67(U; Apr€” — UrAjr€) + 3(2 ~a®)(ViU; — V;U) =0,

where we have used (1.3) and (3.2).

Applying (3.6) by &¢*¥ and making use of (1.4), (2.5), (3.5) and a() —
f) = £, we find

ar; ={dr(£) + 3(A — a — 6)(aA - Zc +3a?)}4;,€

+7(A=0-9a)U; — 3a(A — o — 0)(aX — Z—c + 3a2)§j-
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Substituting this into (3.6), we can reduce
C c
(Z — &®)a(VyU; — V;Ux) — §T¢kj — 21 Ajr A"
= 7'(/\ -6 - 3a)(UjAkr£T - UkAjrfr)
3
+ 3a(A — 0 — a)(aX — it 30?) (ExAjr€" — & ArrE").

Transvecting U*W7 to this and using (1.4), (2.5) and (2.17), we have
3.7) (2 —a?)a(ViU; — VU URWI = pr{(A—0-3a)a(A—a)+ %9}-

By the way, (2.11) turns out to be

¢

4
c oy C,o 9 3

+ {3a(A — a)(Z — o)+ Z(3a ~ 2af — i 1)}U;

azUkaUj =T(OIA + E)Aﬁ{"‘ + azAjra" + o7}

because of Lemma 1 and Lemma 2, which implies
aWIURVLU; = pr (0 — N),
where we have used (2.17) and (2.25).
Since U and W are mutually orthogonal, by transvecting W*UJ to
(2.8) and making use of (1.4), (2.20) and (2.24), we have
aWkUIV,U; = ur(2) — 0 — o).

Because of the last two equations, it is clear that

aWIU*(VpU; — V;Ux) = pr(20 — 3X + ).
From this and (3.7), we see that

pr{(A— 0 — 3a)a(A — a) + %9—!—301(/\ —0—a)(20 —32+a)} =0,

or, using the fact that a(A — ) = £, it follows that 7(a® — §) = 0.
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Let ©; be the set of points such that 7 # 0 in Q and suppose that
Q; be non-empty. Then we have o? = 7 on §; and therefore A{ =0
because of (3.2), which is a contradiction. Hence 2; is empty and thus

7 =0 on 2. Accordingly (3.2) and (3.6) are respectively reduced to

(3.8) aa; = 3(& — )

(3 = &) (VU; - V3Us) =0.

Now, let Q; = {p € Q|a?(p) # $} and suppose that £, be non void.
We then have VU; — V;Uy = 0. Therefore (3.5) means

(3.9) al — %c +3a2=0

on {2;. Since we have a(A — 6) = £, it follows that o+ 3% — £ =0 on
2. Differentiation gives

(3.10) 20, + 3(2 — a?)(6 + 6a)U; =0

by virtue of (3.2).

On the other hand, (3.1) implies a? = ¢, where we have used (2.5),
(3.9) and (3.10). Thus a is constant on Q2 and hence U = 0 because
of (3.2) and consequently the set (23 is void. Therefore we have o® = £
on {2 and thus « is constant. Accordingly (2.15) turns out to be §; =
—2(20 + a)U;, which unable us to be (20 + &)(V;U; — V;U;) = 0. From
this and (3.5) we have 20 + @ = 0 and hence 2a(\ — @) + a? = 0.
Therefore €2 is empty and thus £ is a principal curvature vector field.
Consequently (2.1) means that A¢ = ¢A. This completes the proof

because of Theorem C.
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